Базовые понятия в электрике. Базовые понятия о электричестве

30.06.2019 Электрика

Прежде чем приступить к работам, связанным с электричеством, необходимо немного «подковаться» теоретически в этом вопросе. Если говорить просто, то обычно под электричеством подразумевается это движение электронов под действием электромагнитного поля. Главное - понять, что электричество - энергия мельчайших заряженных частиц, которые движутся внутри проводников в определенном направлении.

Постоянный ток практически не меняет своего направления и величины во времени. Допустим, в обычной батарейке постоянный ток. Тогда заряд будет перетекать от минуса к плюсу, не меняясь, пока не иссякнет.

Переменный ток - это ток, который с определенной периодичностью меняет направление движения и величину.

Представьте ток как поток воды, текущий по трубе. Через какой-то промежуток времени (например, 5 с) вода будет устремляться то в одну сторону, то в другую. С током это происходит намного быстрее - 50 раз в секунду (частота 50 Гц). В течение одного периода колебания величина тока повышается до максимума, затем проходит через ноль, а потом происходит обратный процесс, но уже с другим знаком. На вопрос, почему так происходит и зачем нужен такой ток, можно ответить, что получение и передача переменного тока намного проще, чем постоянного.

Получение и передача переменного тока тесно связаны с таким устройством, как трансформатор. Генератор, который вырабатывает переменный ток, по устройству гораздо проще, чем генератор постоянного тока. Кроме того, для передачи энергии на дальнее расстояние переменный ток подходит лучше всего. С его помощью при этом теряется меньше энергии.

При помощи трансформатора (специального устройства в виде катушек) переменный ток преобразуется с низкого напряжения на высокое и наоборот, как это представлено на иллюстрации. Именно по этой причине большинство приборов работает от сети, в которой ток переменный. Однако постоянный ток также применяется достаточно широко - во всех видах батарей, в химической промышленности и некоторых других областях.

Многие слышали такие загадочные слова, как одна фаза, три фазы, ноль, заземление или земля, и знают, что это важные понятия в мире электричества. Однако не все понимают, что они обозначают и какое отношение имеют к окружающей действительности. Тем не менее знать это обязательно. Не углубляясь в технические подробности, которые не нужны домашнему мастеру, можно сказать, что трехфазная сеть - это такой способ передачи электрического тока, когда переменный ток течет по трем проводам, а по одному возвращается назад. Вышесказанное надо немного пояснить. Любая электрическая цепь состоит из двух проводов. По одному ток идет к потребителю (например, к чайнику), а по другому возвращается обратно. Если разомкнуть такую цепь, то ток идти не будет. Вот и все описание однофазной цепи.


Тот провод, по которому ток идет, называется фазовым, или просто фазой, а по которому возвращается - нулевым, или нолем. Трехфазная цепь состоит из трех фазовых проводов и одного обратного. Такое возможно потому, что фаза переменного тока в каждом из трех проводов сдвинута по отношению к соседнему на 120 °C. Более подробно на этот вопрос поможет ответить учебник по электромеханике. Передача переменного тока происходит именно при помощи трехфазных сетей. Это выгодно экономически - не нужны еще два нулевых провода.


Подходя к потребителю, ток разделяется на три фазы, и каждой из них дается по нолю. Так он попадает в квартиры и дома. Хотя иногда трехфазная сеть заводится прямо в дом. Как правило, речь идет о частном секторе, и такое положение дел имеет свои плюсы и минусы. Об этом будет рассказано позднее. Земля, или, правильнее сказать, заземление - третий провод в однофазной сети. В сущности, рабочей нагрузки он не несет, а служит своего рода предохранителем. Это можно объяснить на примере. В случае, когда электричество выходит из-под контроля (например, короткое замыкание), возникает угроза пожара или удара током. Чтобы этого не произошло (то есть значение тока не должно превышать безопасный для человека и приборов уровень), вводится заземление. По этому проводу избыток электричества в буквальном смысле слова уходит в землю.


Еще один пример. Допустим, в работе электродвигателя стиральной машины возникла небольшая поломка и часть электрического тока попадает на внешнюю металлическую оболочку прибора. Если заземления нет, этот заряд так и будет блуждать по стиральной машине. Когда человек прикоснется к ней, он моментально станет самым удобным выходом для данной энергии, то есть получит удар током. При наличии провода заземления в этой ситуации излишний заряд стечет по нему, не причинив никому вреда. В дополнение можно сказать, что но- левой проводник также может быть заземлением и, в принципе, им и является, но только на электростанции. Ситуация, когда в доме нет заземления, небезопасна. Как с ней справиться, не меняя всю проводку в доме, будет рассказано в дальнейшем.


Внимание!

Некоторые умельцы, полагаясь на начальные знания по электротехнике, устанавливают нулевой провод как заземляющий. Никогда так не делайте. При обрыве нулевого провода корпуса заземленных приборов окажутся под напряжением 220 В.

Рис. 1. Взаимодействие положительных и отрицательных зарядов электричества

Автор этого учебника руководствовался старыми знаниями, согласно которым в проводах могут присутствовать, как положительные заряды + (протоны), так и отрицательные заряды - (электроны). Он не знает, что протоны находятся глубоко в ядрах атомов. В свободном состоянии могут находиться лишь протоны атомов водорода в электролитических растворах и это состояние предельно краткосрочное . Но авторы учебников по физике и химии е знают этого и продолжают калечить интеллектуальный потенциал своих учеников. Вот текст из школьного учебника «Физика и химия» .

Эти же знаки (+) и (-) устанавливаются на клеммах аккумуляторов, батарей, конденсаторов, диодов, выпрямителей и т. д. Они понимаются, как положительные и отрицательные заряды электричества - протоны и электроны. Они же фигурируют и в неисчислимых трудах физиков - теоретиков, стремящихся описать их взаимодействия в различных физических явлениях и процессах. Но эра теоретического самовольства и самодовольства на исходе, так как главный судья достоверности физических теорий уже вступил в свои права. Недалёк тот день, когда старшеклассник, обученный проверке достоверности теоретического результата с помощью аксиомы Единства, легко сможет установить, что унитарная квантовая теория противоречит этой аксиоме. Этого достаточно, чтобы оставить её в покое на полке истории науки.

Итак, выпрямитель, включаемый в цепь переменного напряжения и тока, формирует на выходе плюс и минус. Уважаемые физики-теоретики! Как прикажете понимать это?

Ведь одновременное присутствие в проводах протонов и электронов автоматически ведёт к формированию атомов водорода, которые существуют лишь в плазменном состоянии при температуре более 5000 градусов. Из этого однозначно следует, что в проводах нет свободных протонов - носителей положительных зарядов, а есть только электроны. Зачем же пишите на клеммах конденсаторов, выпрямителей, диодов знаки плюс и минус? Ведь они ассоциируются с положительными и отрицательными зарядами электричества! Но в проводах с электрическим напряжением нет свободных протонов - носителей положительных зарядов. Как прикажете понимать эту путаницу, которую Вы закладываете в головы учащейся молодёжи на всю жизнь?! Если Вы считаете, что электроны приходят только на отрицательные пластины конденсаторов, а на положительные не приходят (боятся, наверное) и они остаются свободными от зарядов, то зачем же Вы приписываете им знак плюс, который ассоциируется с положительным зарядом электричества - протоном? Вы трубите во всех своих трудах и учебниках, что электроны движутся по проводам с постоянным напряжением от минуса к плюсу. Интересное дело. Почему же тогда они, согласно Вашим представлениям, не движутся по электрической цепи от минусовой пластины конденсатора к плюсовой при его зарядке??? Почему Вы миритесь с обилием этих Ваших противоречий???

Забавляйтесь своими противоречивыми теоретическими творениями и представлениями самостоятельно, но не навязывайте их молодому поколению, которое имеет возможность проверить Ваши «гениальные» теоретические построения не только с помощью аксиомы Единства, но экспериментально, с помощью самого простого и самого древнего прибора - компаса.

Известно, что электроны, движущиеся по проводу, формируют вокруг него направленное магнитное поле. Поскольку стрелка компаса чётко реагирует на изменение направления магнитного поля, то показаний этого древнего прибора достаточно для определения направления движения электронов по проводу (рис. 2).

На рис. 2 показана электрическая схема, направления проводов которой сориентированы плюсовыми концами на юг (S), а минусовыми - на север (N). При отсутствии тока в проводе направление стрелок компасов А, В, С и D совпадают с направлением правого и левого проводов на север N. При включении тока вокруг провода возникает магнитное поле и стрелки компасов отклоняются .

Когда электроны движутся по проводу в направлении с юга (S) на север (N), то стрелка компаса A, расположенного над проводом, отклоняется вправо, а стрелка компаса B, расположенного под проводом, - влево (табл. 1).

Таблица 1. Углы отклонения стрелок компасов A и B при различных токах (рис. 2)

Из этих элементарных экспериментальных результатов следует, что магнитное поле вокруг провода закручено против хода часовой стрелки и имеет магнитный момент .

Уважаемые физики -теоретики, Вам пора уже знать, что формированием и поведением электрона (рис. 3) управляют 23 константны . Наличие модели электрона с известным направлением вектора его магнитного момента (рис. 3) даёт нам основание полагать, что магнитное поле вокруг провода формируется совокупностью магнитных полей свободных электронов, сориентированных вдоль провода таким образом, что направления векторов магнитных моментов каждого электрона совпадает с направлением вектора магнитного момента поля, образующегося вокруг провода (рис. 2 и 4).

Рис. 3. а) схема теоретической модели электрона

(показана лишь часть магнитных силовых линий)

Рис. 4. Схема движения электронов в проводе от плюса (+) к минусу (-) и формирования на его концах южного (S) и северного (N) магнитных полюсов и магнитного поля

вокруг провода

Те же электроны (рис. 2), которые движутся по правому проводу с севера (N) на юг (S), формируют вокруг него противоположно направленное магнитное поле и стрелки аналогичных компасов С и D отклоняются противоположно отклонению стрелок компасов А и В (рис. 2). Из схемы магнитного поля вокруг провода (рис. 4) следует, что оно может быть сформировано лишь в том случае, если северные магнитные полюса электронов (рис. 3) направлены вверх в сторону минусового конца провода, а южные - вниз, в сторону плюсового конца провода (рис. 4).

Итак, результаты эксперимента, представленные на рис. 2 и в табл. 1, показывают, что направление магнитного поля, формирующегося вокруг провода, совпадает с направлением вращения свободных электронов в нём (рис. 2, 4), поэтому направление тока совпадает с направлением движения электронов от плюса к минусу , .

Неопровержимость этого факта подтверждена ещё в 1984 году другим элементарным экспериментом, поставленным инженером А.К Сухвал . Он взял подковообразный магнит из электромагнитного материала с напряжённостью магнитного поля порядка 500 Э и присоединил к его полюсам щупы чувствительного микроамперметра, который начал показывать ток порядка 0,10-0,20 μΑ (рис. 5).

Рис. 5. Эксперимент инженера А.К. Сухвал

При этом плюсовой щуп микроамперметра подсоединялся к южному полюсу S магнита, а минусовой - к северному N. Это убедительное доказательство движения электронов по проводам микроамперметра от плюса к минусу, а точнее от южного магнитного полюса к северному. Особо отметим, что эту информацию мы получили 15.06.09, то есть значительно позже того, как описали процесс движения электронов от плюса к минусу и многократно опубликовали его.

Уважаемые физики - теоретики и педагоги, почему Вы не понимаете, что навязывание школьникам и студентам ошибочных представлений о том, что электроны движутся в проводах от минуса к плюсу, а ток течёт в обратном направлении является интеллектуальным преступлением?

Итак, направления силовых линий магнитного поля, образующегося вокруг провода с током, соответствуют такой ориентации свободных электронов в нём, при которой они движутся от плюса к минусу, ориентируясь так, что южные полюса магнитных полей электронов оказываются направленными к плюсовому концу провода, а северные - к минусовому (рис. 2, 4).

Этот простой, легко воспроизводимый эксперимент, ярко демонстрирует, что если источником питания является аккумулятор или батарея, то электроны движутся по проводам от плюса (рис. 2, 4) к минусу. Такая картина полностью согласуется со структурой электронов (рис. 3) и однозначно доказывает, что свободные электроны провода с постоянным напряжением повёрнуты южными магнитными полюсами к положительному концу провода, а северными - к отрицательному. В этом случае не требуется присутствие в проводах свободных протонов для формирования положительного потенциала, так как свободные электроны провода формируют на его концах не разноимённые электрические заряды, а разноимённые магнитные полюса.

Из новых представлений о поведении электронов в проводе следует необходимость заменить представления о плюсовом и минусовом концах проводов сети с постоянным напряжением на концы с северным и южным магнитными полюсами. Однако, процесс реализации этой необходимости будет длительный. Но он, как мы увидим дальше, неизбежен, так как углубление представлений о реальных электродинамических процессах невозможно без новых условностей в обозначении концов электрических проводов.

Таким образом, элементарная экспериментальная информация, которую мы привели, позволяет сформулировать первые предположения (постулаты) о структуре электрона и его движении вдоль провода. Для этого обратим внимание на то, что экспериментальный провод сориентирован с юга (S) на север (N) и южный конец этого провода подключён к плюсовой (+) клемме генератора (G) постоянного тока или к плюсовой клемме выпрямителя.

Итак, формулируем постулаты. Первый - электроны, движутся по проводу не от плюса (+) к минусу (-), как считалось, а от южной клеммы к северной. Второй - электроны имеют вращающуюся электромагнитную структуру. Третий - электроны вращаются против часовой стрелки и имеют собственные магнитные моменты . Четвёртый - магнитные поля движущихся и вращающихся свободных электронов в проводах формируют суммарное магнитное поле, которое выходит за пределы провода. Направление вектора магнитного момента вокруг провода совпадает с направлениями векторов магнитных моментов электронов (рис. 4).

А теперь проведём эксперимент по зарядке и разрядке конденсатора. Ориентацию проводов и электрических знаков потенциалов на их концах оставим прежней и посмотрим куда движутся электроны, заряжая конденсатор (рис. 5).

2. Зарядка диэлектрического конденсатора

Ошибочность существующей интерпретации работы конденсатора особенно очевидна. Она базируется на присутствии в электрической цепи положительных и отрицательных зарядов. Носители этих зарядов известны: протон и электрон. Однако, также известно, что они чувствуют присутствие друг друга на расстоянии в тысячу раз большем размера электрона и в миллион раз большем размера протона . Даже такое их далёкое соседство заканчивается процессом формирования атомов водорода, которые существуют лишь в плазменном состоянии при температуре более 5000 С. Это происходит, например, в процессах удаления электронов и протонов от Солнца и последующего объединения их в атомы водорода . Так что совместное присутствие протонов и электронов в свободном состоянии в проводниках полностью исключается, поэтому положительный и отрицательный потенциалы на пластинах диэлектрического конденсатора - ошибка физиков. Исправим её.

Сейчас мы увидим, что пластины диэлектрического конденсатора заряжаются не разноимённой электрической полярностью, а разноимённой магнитной полярностью. При этом функции плюса принадлежат южному магнитному полюсу электрона, а функции минуса - северному (рис. 3). Эти полюса и формируют полярность, но не электрическую, а магнитную. Проследим процесс зарядки диэлектрического конденсатора, чтобы увидеть, как магнитные полюса электрона формируют магнитную полярность его пластин. Известно, что между платинами диэлектрического конденсатора находится диэлектрик D (рис. 5).

Схема эксперимента по зарядке диэлектрического конденсатора показана на рис. 5, а. Самое главное требование к схеме - ориентация её с юга (S) на север (N) так, чтобы положительные знаки электрических потенциалов были на юге, а отрицательные - на севере. Чтобы обеспечить полную изоляцию конденсатора от сети после его зарядки, желательно использовать электрическую вилку, кратковременно включаемую в розетку сети с напряжением 220 V.

Сразу после диода d показан компас 1 (К), положенный на провод, идущий к конденсатору С. Стрелка этого компаса, отклоняясь вправо в момент включения вилки, показывает направление движения электронов (рис. 5, а) от точки S к нижней пластине конденсатора, имеющей знак минус.

Рис. 5. а) схема нашего эксперимента зарядки конденсатора;

B) схема реализации этого эксперимента американскими учёными

Тут уместно обратить внимание на общность информации о поведении электронов в проводах, представленной на рис. 2, 4, и 5. Выше компаса 1 (рис. 5) показана схема направления магнитного поля вокруг провода, формируемого движущимися в нём электронами. Эта схема аналогична схемам, показанным на рис. 2.

Ученые из Калифорнийского университета в Санта-Барбаре предложили свою интерпретацию зарядки конденсатора, в которой при подаче электрического напряжения на его обкладках накапливался бы не только электрический заряд электронов, но и, как они считают, их спин.

Спиновый () конденсатор (рис. 5, b) - диэлектрический материал (обозначен голубым цветом) зажат между обкладками из ферромагнитного материала (обозначены желтым цветом). Красным показана плотность спин-поляризованных электронов, достигающая максимумов величины на поверхностях раздела и противоположная по знаку на противоположных обкладках конденсатора .

Американцы сообщают, что данный эффект является пока результатом численного моделирования, но уже мало кто сомневается в его существовании, поскольку методы расчетов достигли такого уровня развития, что начинают не просто объяснять экспериментальные результаты, но и предсказывать новые эффекты. Кроме того, в пользу существования описанного явления говорит недавно обнаруженный в электрохимических элементах с ферромагнитными электродами эффект перестраиваемого электрическим полем магнетизма.

Уважаемые физики - теоретики, результаты российского элементарного эксперимента, доказывающего, что обе пластины конденсатора заряжаются электронами, и его математического моделирования американскими учёными, совпадают. Отрицание этого факта, разрушающего Вашу теорию, эквивалентно борьбе с ветряной мельницей.

Таким образом, электроны, прошедшие через диод, приходят к нижней пластине конденсатора, сориентированными векторами спинов и магнитных моментов к её внутренней поверхности (рис. 5, а). В результате на этой поверхности формируется северный магнитный потенциал (N) .

Вполне естественно, что к внутренней поверхности верхней пластины конденсатора электроны придут из сети, сориентированными южными магнитными полюсами (S). Доказательством этого служит экспериментальный факт отклонения стрелки верхнего компаса 2 (К) вправо (рис. 5, а). Это означает, что электроны, движущиеся из сети к верхней пластине конденсатора, ориентированы южными магнитными полюсами (S) в сторону движения (рис. 6) .

Рис. 6. Схема движения электронов к пластинам диэлектрического конденсатора

Таким образом, ориентацию электронов на пластинах диэлектрического конденсатора обеспечивает проницаемость их магнитных полей через диэлектрик D (рис. 5). Потенциал на обоих пластинах конденсатора один - отрицательный и две магнитных полярности: северная, которой старая физическая теория приписывает знак минус, и южная, которой устаревшая физика приписывает знак полюс и предупреждает нас, что эта условность соответствует отсутствию электронов на этой пластине конденсатора.

На рис. 6 представлена схема, поясняющая ориентацию электронов, движущихся к пластинам конденсатора С. Электроны приходят к нижней пластине конденсатора, сориентированными северными магнитными полюсами (N) к её внутренней поверхности (рис. 6). К внутренней поверхности верхней пластины конденсатора приходят электроны, сориентированные южными магнитными полюсами (S).

Так электроны - единственные носители электричества в проводах формируют на пластинах конденсатора не разноимённую электрическую полярность, а разноимённую магнитную полярность. Нет на пластинах диэлектрического конденсатора протонов - носителей положительных зарядов .

3. Разрядка диэлектрического конденсатора

Процесс разрядки диэлектрического конденсатора на сопротивление - следующее экспериментальное доказательство соответствия реальности выявленной модели электрона (рис. 3) и ошибочности сложившихся представлений о том, что на пластинах диэлектрического конденсатора формируются разноимённые электрические заряды (рис. 7) .

Схема отклонения стрелок компасов (К) 1, 2, 3 и 4 при разрядке конденсатора на сопротивление R в момент включения выключателя 5 показана на рис. 7 .

Рис. 8. Схема движения электронов от пластин конденсатора к сопротивлению R

при разрядке диэлектрического конденсатора

Как видно (рис. 6 и 7), в момент включения процесса разрядки конденсатора, магнитная полярность на пластинах конденсатора изменяется на противоположную и электроны, развернувшись, начинают двигаться к сопротивлению R (рис. 7, 8) .

Электроны, идущие от верхней пластины конденсатора ориентируются южными магнитными полюсами в сторону движения, а от нижней - северными (рис. 8). Компасы 3 и 4, установленные на совокупности проводов ВА, сориентированных с юга на север, чётко фиксируют этот факт, отклонением стрелок вправо, доказывая этим, что векторы спинов и магнитных моментов всех электронов в этих проводах направлены с юга на север (рис. 7, 8) .

Уважаемые физики - теоретики, я изложил Вам мизерную часть электродинамики микромира, о которой у Вас нет элементарного представления. Пора опомниться и приступить к изучению электродинамики микромира, в которой детально описана физика следующих процессов и явлений , :

1. Выявлена модель фотона, формированием и поведением которой управляют 7 констант, и все параметры которой изменяются в интервале 15-ти порядков.

2. Выявлена модель электрона - носителя отрицательного электрического заряда, формированием и поведением которой управляют 23 константы.

3. Выявлена модель протона - носителя положительного электрического заряда, все параметры которого, определённые теоретически, совпадают с их экспериментальными значениями.

4. Детально описана физика следующих электродинамических процессов: движение электронов по проводам с постоянным и переменным напряжением, движение электронов через диод, зарядка и разрядка конденсатора, работа колебательного контура: конденсатор - индуктивность, формирование электрической искры в разрыве провода и её поведение в магнитных полях с разной полярностью, фотоэффект и эффект Комптона, работа радиолампы, передача и прием электронной информации, формирование реликтового излучения и нейтронных звёзд и многое другое , .

ЗАКЛЮЧЕНИЕ

Жаль, конечно, что государство не имеет системы защиты молодёжи от навязывания ей учеными и педагогами ошибочных знаний, которые калечат молодёжный интеллектуальный потенциал.

Литература

1. Касьянов В.А. Физика. 10 класс. Дрофа. М. 2005.

2. Гуревич А.Е., Исаев Д.А., Понтак Л.С. Физика и химия. Учебник для 5-6 классов. «Дрофа». М. 2007. 192 с.

3. Канарёв Ф.М. Начала физхимии микромира. 12-е издание. Том I. Краснодар 2009. 687 с.

4. Канарёв Ф.М. Начала физхимии микромира. 12-е издание. Том II. Краснодар 2009. 448 с. http://kubagro.ru/science/prof.php?kanarev

5. Сухвал А.К. Два опыта с магнитным полем. Журнал «Химия и жизнь», № 3, 1988 г. с 27.

Базовые понятия в электрике

Переменный ток - это ток, который с определенной периодичностью меняет направление движения и величину.

Представьте ток как поток воды, текущий по трубе. Через какой-то промежуток времени (например, 5 с) вода будет устремляться то в одну сторону, то в другую. С током это происходит намного быстрее - 50 раз в секунду (частота 50 Гц). В течение одного периода колебания величина тока повышается до максимума, затем проходит через ноль, а потом происходит обратный процесс, но уже с другим знаком. На вопрос, почему так происходит и зачем нужен такой ток, можно ответить, что получение и передача переменного тока намного проще, чем постоянного.

Получение и передача переменного тока тесно связаны с таким устройством, как трансформатор (рис. 1.2). Генератор, который вырабатывает переменный ток, по устройству гораздо проще, чем генератор постоянного тока. Кроме того, для передачи энергии на дальнее расстояние переменный ток подходит лучше всего. С его помощью при этом теряется меньше энергии.



Рис 1.2. Трансформатор на подстанции понижает напряжение от высоковольтной линии для передачи в бытовую сеть

При помощи трансформатора (специального устройства в видек атушек) переменный ток преобразуется с низкого напряжения на высокое и наоборот, как это представлено на иллюстрации (рис. 1.3).

Именно по этой причине большинство приборов работает от сети, в которой ток переменный. Однако постоянный ток так-же применяется достаточно широко - во всех видах батарей, в химической промышленности и некоторых других областях.

Многие слышали такие загадочные слова, как одна фаза, три фазы, ноль, заземление или земля, и знают, что это важные понятия в мире электричества. Однако не все понимают, что они обозначают и какое отношение имеют к окружающей действительности. Тем не менее знать это обязательно.

Не углубляясь в технические подробности, которые не нужны домашнему мастеру, можно сказать, что трехфазная сеть - это такой способ передачи электрического тока, когда переменный ток течет по трем проводам, а по одному возвращается назад. Вышесказанное надо немного пояснить. Любая электрическая цепь состоит из двух проводов. По одному ток идет к потребителю (например, к чайнику), а по другому возвращается обратно. Если разомкнуть такую цепь, то ток идти не будет. Вот и все описание однофазной цепи (рис. 1.4).



Тот провод, по которому ток идет, называется фазовым, или просто фазой, а по которому возвращается - нолевым, или нолем. Трехфазная цепь состоит из трех фазовых проводов и одного обратного. Такое возможно потому, что

фаза переменного тока в каждом из трех проводов сдвинута по отношению к соседнему на 120 °С (рис. 1.5). Более подробно на этот вопрос поможет ответить учебник по электромеханике.



Рис. 1.5. Схема трехфазной цепи

Передача переменного тока происходит именно при помощи трехфазных сетей. Это выгодно экономически - не нужны еще два нолевых провода. Подходя к потребителю, ток разделяется на три фазы, и каждой из них дается по нолю. Так он попадает в квартиры и дома. Хотя иногда трехфазная сеть заводится прямо в дом. Как правило, речь идет о частном секторе, и такое положение дел имеет свои плюсы и минусы. Об этом будет рассказано позднее.

Земля, или, правильнее сказать, заземление - третий провод в однофазной сети. В сущности, рабочей нагрузки он не несет, а служит своего рода предохранителем.

Это можно объяснить на примере. В случае когда электричество выходит из-под контроля (например, короткое замыкание), возникает угроза пожара или удара током. Чтобы этого не произошло (то есть значение тока не должно превышать безопасный для человека и приборов уровень), вводится заземление. По этому проводу избыток электричества в буквальном смысле слова уходит в землю (рис. 1.6).

Еще один пример. Допустим, в работе электродвигателя стиральной машины возникла небольшая поломка и часть электрического тока попадает на внешнюю металлическую оболочку прибора. Если заземления нет, этот заряд так и будет блуждать по стиральной машине. Когда человек прикоснется к ней, он моментально станет самым удобным выходом для данной энергии, то есть получит удар током. При наличии провода заземления в этой ситуации излишний заряд стечет по нему, не причинив никому вреда. В дополнение можно сказать, что нолевой проводник также может быть заземлением и, в принципе, им и является, но только на электростанции.

Ситуация, когда в доме нет заземления, небезопасна. Как с ней справиться, не меняя всю проводку в доме, будет рассказано в дальнейшем.

ВНИМАНИЕ!

Некоторые умельцы, полагаясь на начальные знания по электротехнике, устанавливают нолевой провод как заземляющий. Никогда так не делайте. При обрыве нолевого провода корпуса заземленных приборов окажутся под напряжением 220 В .