Кто открыл существование клеток в 1665 году. История открытия клетки. Создание клеточной теории. Клеточная теория в современном виде включает три главных положения

21.08.2021 Ремонт

– элементарная структурно-функциональная единица всех живых организмов Она может существовать как отдельный организм (бактерии, простейшие, водоросли, грибы), так и в составе тканей многоклеточных животных, растений и грибов.

История изучения клетки. Клеточная теория.

Жизнедеятельность организмов на клеточном уровне изучает наука цитология или биология клетки. Возникновение цитологии как науки тесно связано с созданием клеточной теории, самого широкого и фундаментального из всех биологических обобщений.

История изучения клетки неразрывно связана с развитием методов исследований, в первую очередь с развитием микроскопической техники. Впервые микроскоп применил для исследований растительных и животных тканей английский физик и ботаник Роберт Гук (1665 г.). Изучая срез пробки сердцевины бузины, он обнаружил отдельные полости – ячейки или клетки.

В 1674 г. знаменитый голландский исследователь Антони де Левенгук усовершенствовал микроскоп (увеличивал в 270 раз), обнаружил в капле воды одноклеточные организмы. В зубном налёте обнаружил бактерий, открыл и описал эритроциты, сперматозоиды, а из животных тканей описал строение сердечной мышцы.

  • 1827 г. – наш соотечественник К. Бэр открыл яйцеклетку.
  • 1831 г. – английский ботаник Роберт Броун описал ядро в клетках растений.
  • 1838 г. – немецкий ботаник Матиас Шлейден выдвинул идею об идентичности растительных клеток с точки зрения их развития.
  • 1839 г. – немецкий зоолог Теодор Шванн сделал окончательное обобщение, что клетки растений и животных имеют общее строение. В своей работе «Микроскопические исследования о соответствии в структуре и росте животных и растений» он сформулировал клеточную теорию, согласно которой клетки являются структурной и функциональной основой живых организмов.
  • 1858 г. – немецкий патолог Рудольф Вирхов применил клеточную теорию в патологии и дополнил её важными положениями:

1) новая клетка может возникнуть только из предшествующей клетки;

2) болезни человека имеют в своей основе нарушение строения клеток.

Клеточная теория в современном виде включает три главных положения:

1) клетка – элементарная структурная, функциональная и генетическая единица всего живого – первоисточник жизни.

2) новые клетки образуются в результате деления предшествующих; клетка – элементарная единица развития живого.

3) структурно-функциональными единицами многоклеточных организмов являются клетки.

Клеточная теория оказала плодотворное влияние на все направления биологических исследований.

О существовании клеток люди узнали после изобретения микроскопа. Самый первый примитивный микроскоп изобрел голландский шлифовальщик стекол З. Янсен (1590 г.), соединив вместе две линзы.

Английский физик и ботаник Р. Гук, рассмотрев срез пробки пробкового дуба обнаружил, что она состоит из ячеек, похожих на соты, которые он назвал клетками (1665 г.). Да, да... это тот самый Гук, именем которого назван известный физический закон.


Рис. "Срез пробкового дерева из книги Роберта Гука, 1635-1703"



В 1683 г. нидерландский исследователь А. Ван Левенгук, усовершенствовав микроскоп, наблюдал живые клетки и впервые описал бактерии.



Российский ученый Карл Бэр в 1827 г. обнаружил яйцеклетку млекопитающих. Этим открытием он подтвердил ранее высказанную идею английского врача У. Гарвея о том, что все живые организмы развиваются из яйца.

Ядро было сначала обнаружено в растительных клетках английским биологом Р. Брауном (1833 г.).



Большое значение для понимания роли клетки в живой природе имели труды немецких ученых: ботаника М. Шлейдена и зоолога Т. Шванна. Они первыми сформулировали клеточную теорию , основной пункт которой утверждал, что все организмы, в том числе растительные и животные, состоят из простейших частиц - клеток, а каждая клетка - самостоятельное целое. Однако в организме клетки действуют совместно, формируя гармоничное единство.

Позднее в клеточную теорию добавлялись новые открытия. В 1858 г. немецкий ученый Р. Вирхов обосновал, что все клетки образуются из других клеток путем клеточного деления: "всякая клетка из клетки".

Клеточная теория послужила основой возникновения в XIX в. науки цитологии. К концу XIX в. благодаря усложнению микроскопической техники были открыты и изучены структурные компоненты клеток и процесс их деления. Электронный микроскоп позволил исследовать тончайшие структуры клеток. Было обнаружен удивительное сходство в тонком строении клеток представителей всех царств живой природы.


Основные положения современной клеточной теории:
  • клетка - структурно-функциональная единица всех живых организмов, а также единица развития;
  • клеткам присуще мембранное строение;
  • ядро - главная часть эукариотической клетки;
  • клетки размножаются только делением;
  • клеточное строение организмов свидетельствует о том, что растения и животные имеют единое происхождение.

1. Впервые увидел и описал клетки растений: Р. Вирхов; Р. Гук; К. Бэр; A. Левенгук. 2. Усовершенствовал микроскоп и впервые увидел одноклеточные организмы: М. Шлейден; А. Левенгук; Р. Вирхов; Р. Гук.

3. Создателями клеточной теории являются: Ч. Дарвин и А. Уоллес; Т. Шванн и М. Шлейден; Г. Мендель и Т. Морган; Р. Гук и Н. Г. 4. Клеточная теория неприемлима для: грибов и бактерий; вирусов и бактерий; животных и растений; бактерий и растений. 5. Клеточное строение всех живых организмов свидетельствует о: единстве химического состава; многообразии живых организмов; единстве происхождения всего живого; единстве живой и неживой природы

Прокариоты – организмы, клетки которых не имеют ядра. Прокариоты (от лат. про - перед, вместо и греч. карион ядро) - над царство организмов, в состав которого входят царства Археи (Архебактерии) и Настоящие бактерии (Эубактерии). К настоящим бактериям относятся собственно бактерии и цианобактерии (устаревшее название - «сине-зеленые водоросли»). Аналог ядра - структура, состоящая из ДНК, белков и РНК.

Клетки прокариот имеют поверхностный аппарат и цитоплазму, в которой находятся немногочисленные органеллы и разнообразные включения. Прокариотические клетки не имеют большинства органелл (митохондрий, пластид, эндоплазматической сети, комплекса Гольджи, лизосом, клеточного центра и т. п.).

Размеры прокариот обычно варьируют в пределах 0, 2 -30 мкм в диаметре или длину. Иногда их клетки гораздо больших размеров; так, некоторые виды рода Спирохета могут достигать до 250 мкм длины. Форма клеток прокариот разнообразна: сферическая, палочковидная, в виде запятой или спирально закрученной нити и т. п.

В состав поверхностного аппарата клеток прокариот входят плазматическая мембрана, клеточная стенка, иногда –слизистая капсула. У большинства бактерий клеточная стенка состоит из высокомолекулярного органического соединения муреина. Это соединение образует сетчатую структуру, придающую жесткость клеточной стенке.

У цианобактерий в состав наружного слоя клеточной стенки входят полисахарид пектин и особые сократительные белки. Они обеспечивают такие формы движения, как скольжение или вращение.

В состав клеточной стенки часто входит тоненький слой - так называемая наружная мембрана, которая подобно плазматической мембране содержит белки, фосфолипиды и другие вещества. Она обеспечивает повышенную степень защиты содержимого клетки. Клеточная стенка бактерий обладает антигенными свойствами.

Слизистая капсула состоит из мукополисахаридов, белков или полисахаридов с белковыми включениями. Она не очень крепко связана с клеткой и легко разрушается под действием определенных соединений. Поверхность клеток некоторых бактерий покрыта многочисленными тонкими нитевидными выростами. С их помощью клетки бактерий обмениваются наследственной информацией, сцепляются между собой или прикрепляются к субстрату.

Рибосомы прокариот мельче рибосом эукариотических клеток. Плазматическая мембрана может образовывать гладкие или складчатые впячивания в цитоплазму. На складчатых мембранных впячиваниях находятся дыхательные ферменты и рибосомы, а на гладких – фотосинтезирующие пигменты.

В клетках некоторых бактерий (например, пурпурных) фотосинтезирующие пигменты находятся в замкнутых мешковидных структурах, образованных впячиваниями плазматической мембраны. Такие мешочки могут располагаться одиночно или же собраны в кучки. Подобные образования цианобактерий называют тилакоидами; они содержат хлорофилл и расположены одиночно в поверхностном слое цитоплазмы.

У некоторых бактерий и цианобактерий обитателей водоемов или заполненных водой почвенных капилляров, есть особые заполненные газовой смесью газовые вакуоли. Изменяя их объем, бактерии могут перемещаться в толще воды с минимальными затратами энергии.

У многих настоящих бактерий есть один, несколько или много жгутиков. Жгутики могут быть в несколько раз длиннее самой клетки, а их диаметр незначительный (10 -25 нм). Жгутики прокариот лишь внешне напоминают жгутики эукариотических клеток и состоят из одной трубочки, образованной особым белком. Клетки цианобактерий лишены жгутиков.

Особенности процессов жизнедеятельности прокариот § Клетки прокариот могут поглощать вещества лишь с незначительной молекулярной массой. Их поступление в клетку обеспечивают механизмы диффузии и активного транспорта. § Клетки прокариот размножаются исключительно бесполым путем: делением надвое, изредка почкованием. Перед делением наследственный материал клетки (молекула ДНК) удваивается.

Перенесение прокариотами неблагоприятных условий При наступлении неблагоприятных условий у некоторых прокариот происходит спорообразование. Некоторые прокариоты способны к инцистированию (от лат. ин - в, внутри и греч. кистис - пузырь). При этом вся клетка покрывается плотной оболочкой. Цисты прокариот устойчивы к действию радиации, высушиванию, но, в отличие от спор, неспособны переносить воздействие высоких температур. Кроме переживания неблагоприятных условий, споры и цисты обеспечивают распространение прокариот с помощью воды, ветра или других организмов.

Сделаем выводы § Клетки прокариот не имеют ядра и многих органелл (митохондрий, пластид, эндоплазматической сети, комплекса Гольджи, лизосом, клеточного центра и др.). Прокариоты - одноклеточные или колониальные организмы. § Поверхностный аппарат клеток прокариот включает плазматическую мембрану, клеточную стенку, иногда – размещенную над ней слизистую капсулу. В состав клеточной стенки большинства бактерий входит высокомолекулярное органическое соединение муреин, которое придает ей жесткость. § В цитоплазме прокариот находятся мелкие рибосомы и разнообразные включения. Плазматическая мембрана может образовывать гладкие или складчатые впячивания в цитоплазму. На складчатых мембранных впячиваниях размещены дыхательные ферменты и рибосомы, на

Сделаем выводы § В клетках прокариот есть одна или две ядерные зоны нуклеоиды, где расположен наследственный материал – кольцевая молекула ДНК. § Клетки некоторых бактерий имеют органеллы движения один, несколько или много жгутиков. § Клетки прокариот размножаются делением надвое, изредка - почкованием. Для некоторых видов известный процесс конъюгации, во время которого клетки обмениваются молекулами ДНК. Споры и цисты обеспечивают прокариотам переживание неблагоприятных условий и распространение в биосфере.

Цитология («cytos» - ячейка, клетка) наука о клетке. Современная цитология изучает: строение клеток, их формирование как элементарных живых систем, исследует формирование отдельных клеточных компонентов, процессы воспроизведения клеток, репарации, приспособления к условиям среды и другие процессы. Другими словами, современная цитология – это физиология клетки.

Развитие учения о клетке тесно связано с изобретением микроскопа (от греческого «микрос» – небольшой, «скопео» – рассматриваю). Это связано с тем, что человеческий глаз не способен различать объекты с размерами менее 0,1 мм, что составляет 100 микрометров (сокращ. микрон или мкм). Размеры же клеток (а тем более, внутриклеточных структур) существенно меньше.

Например, диаметр животной клетки обычно не превышает 20 мкм, растительной – 50 мкм, а длина хлоропласта цветкового растения – не более 10 мкм. С помощью светового микроскопа можно различать объекты диаметром в десятые доли микрона.

Первый микроскоп был сконструирован в 1610 г. Галилеем и представлял собой сочетание линз в свинцовой трубке (рис. 1.1). А до этого открытия в 1590 г. изготовлением стекол занимались голландские мастера Янсены.

Рис. 1.1. Галилео Галилей (1564-1642)

Впервые микроскоп для исследований применил английский физик и естествоиспытатель Р. Гук (рис. 1.2, 1.4). В 1665 г. он впервые описал клеточное строение пробки и ввел термин «клетка»(рис. 1.3). Р. Гук сделал первую попытку подсчитать количество клеток в определенном объеме пробки.

Он сформулировал представление о клетке как о ячейке, полностью замкнутой со всех сторон и установил факт клеточного строения растительных тканей. Эти два основных вывода и определили направление дальнейших исследований в этой области.

Рис. 1.2. Роберт Гук (1635-1703гг)

Рис. 1.3. Клетки пробки, которые изучал Роберт Гук

Рис. 1.4. Микроскоп Роберта Гука

В 1674 году голландский торговец Антонио ван Левенгук с помощью микроскопа впервые увидел в капле воды «зверьков» - движущиеся живые организмы (одноклеточные организмы, форменные элементы крови, сперматозоиды) и сообщил об этом научному обществу (рис. 1.5, 1.6) . Описания этих «анималькусов» снискали голландцу мировую известность, пробудили интерес к изучению живого микромира.

Рис. 1.5. Антонио ван Левенгук (1632-1723)

Рис. 1.6. Микроскоп Антонио ван Левенгука

В 1693 г. во время пребывания Петра I в Дельфе А. Левенгук продемонстрировал ему, как движется кровь в плавнике рыбы. Эти демонстрации произвели на Петра I такое большое впечатление, что вернувшись в Россию, он создал мастерскую оптических приборов. В 1725 году организована Петербургская академия наук.


Талантливые мастера И.Е. Беляев, И.П. Кулибин изготавливали микроскопы (рис. 1.7, 1.8, 1.9) , в конструировании которых принимали участие академики Л.Эйлер, Ф. Эпинус.

Рис. 1.7. И.П. Кулибин (1735-1818)

Рис. 1.8. И.Е. Беляев

Рис. 1.9. Микроскопы, изготовленные русскими мастерами

В 1671–1679 гг. итальянский биолог и врач Марчелло Мальпиги дал первое систематическое описание микроструктуры органов растений, положившее начало анатомии растений (рис. 1.10) .

Рис. 1.10. Марчелло Мальпиги (1628-1694)

В 1671–1682 гг. англичанин Неемия Грю подробно описал микроструктуры растений; ввел термин «ткань» для обозначения понятия совокупности «пузырьков», или «мешочков» (рис. 1.11) . Оба эти исследователя (они работали независимо друг от друга) дали изумительные по точности описания и рисунки. Они пришли к одному и тому же выводу относительно всеобщности построения растительной ткани из пузырьков.

Рис. 1.11. Неемия Грю (1641-1712)

В 20-х г. XIX в. наиболее значительные работы в области изучения растительных и животных тканей принадлежат французским ученым Анри Дютроше (1824 г.), Франсуа Распайлю (1827 г.), Пьеру Тюрпену (1829 г.). Они доказывали, что клетки (мешочки, пузырьки) являются элементарными структурами всех растительных и животных тканей. Эти исследования подготовили почву для открытия клеточной теории.

Один из основоположников эмбриологии и сравнительной анатомии, академик Петербургской академии наук Карл Максимович Бэр показал, что клетка – единица не только строения, но и развития организмов (рис. 1.12) .

Рис. 1.12. К.М. Бэр (1792-1876гг)

В 1759 г немецкий анатом и физиолог Каспар Фридрих Вольф доказал, что клетка есть единица роста (рис. 1.13) .

Рис. 1.13. К.Ф. Вольф (1733–1794)

1830-е гг. чешский физиолог и анатом Я.Э. Пуркине (рис. 1.14) , немецкий биолог И.П. Мюллер доказали, что клеточная организация является универсальной для всех видов тканей.

Рис. 1.14. Я.Э. Пуркине (1787-1869)

В 1833 г. британский ботаник Р. Броун (рис. 1.15) описал ядро растительной клетки.

Рис. 1.15. Роберт Броун (1773-1858)

В 1837 году Маттиас Якоб Шлейден (рис. 1.16) предложил новую теорию образования растительных клеток, признавая решающую роль в этом процессе клеточного ядра. В 1842 он впервые обнаружил ядрышки в ядре.

Согласно современным представлениям, конкретные исследования Шлейдена содержали ряд ошибок: в частности, Шлейден считал, что клетки могут зарождаться из бесструктурного вещества, а зародыш растения - развиваться из пыльцевой трубки (гипотеза самозарождения жизни).

Рис. 1.16. Маттиас Якоб Шлейден (1804-1881гг)

Немецкий цитолог, гистолог и физиолог Теодор Шванн (рис. 1.17) ознакомился с трудами немецкого ботаника М. Шлейдена, которые описывали роль ядра в растительной клетке. Сопоставляя эти работы с собственными наблюдениями, Шванн разработал собственные принципы клеточного строения и развития живых организмов.

В 1838 году Шванн опубликовал три предварительных сообщения клеточной теории, а в 1839 году - труд «Микроскопические исследования о соответствии в структуре и росте животных и растений», где опубликовал основные принципы теории клеточного строения живых организмов.

Ф. Энгельс утверждал, что создание клеточной теории было одним из трёх величайших открытий в естествознании XIX века, наряду с законом превращения энергии и эволюционной теории.

Рис. 1.17. Теодор Шванн (1810- 1882гг)

В 1834–1847 гг. профессор Медико-хирургической академии в Петербурге П.Ф. Горянинов (рис. 1.18) сформулировал принцип, согласно которому клетка является универсальной моделью организации живых существ.

Горянинов делил мир живых существ на два царства: царство бесформенное, или молекулярное, и органическое, или клеточное. Он писал, что «…органический мир есть прежде всего клеточное царство …». Он отметил в своих исследованиях, что все животные и растения состоят из соединенных между собой клеток, которые он назвал пузырьками, то есть высказал мнение об общем плане строения растений и животных.

Рис. 1.18. П.Ф. Горянинов (1796-1865)

В истории развития клеточной теории можно выделить два этапа:

1) период накопления наблюдений над строением различных одноклеточных и многоклеточных организмов растений и животных (около 300 лет);

2) период обобщения имеющихся данных в 1838 году и формулирование постулатов клеточной теории;

Первым человеком, увидевшим клетки, был английский учёный Роберт Гук (известный нам благодаря закону Гука). В 1665 году , пытаясь понять, почему пробковое дерево так хорошо плавает, Гук стал рассматривать тонкие срезы пробки с помощью усовершенствованного им микроскопа . Он обнаружил, что пробка разделена на множество крошечных ячеек, напомнивших ему монастырские кельи, и он назвал эти ячейки клетками (по-английски cell означает «келья, ячейка, клетка»). В 1675 году итальянский врач М. Мальпиги , а в 1682 году - английский ботаник Н. Грю подтвердили клеточное строение растений. О клетке стали говорить как о «пузырьке, наполненном питательным соком». В 1674 году голландский мастер Антоний ван Левенгук (Anton van Leeuwenhoek, 1632 -1723 ) с помощью микроскопа впервые увидел в капле воды «зверьков» - движущиеся живые организмы (инфузории , амёбы , бактерии ). Также Левенгук впервые наблюдал животные клетки - эритроциты и сперматозоиды . Таким образом, уже к началу XVIII века учёные знали, что под большим увеличением растения имеют ячеистое строение, и видели некоторые организмы, которые позже получили название одноклеточных. В 1802 -1808 годах французский исследователь Шарль-Франсуа Мирбель установил, что все растения состоят из тканей, образованных клетками. Ж. Б. Ламарк в 1809 году распространил идею Мирбеля о клеточном строении и на животные организмы. В 1825 году чешский учёный Я. Пуркине открыл ядро яйцеклетки птиц, а в 1839 ввёл термин «протоплазма ». В 1831 году английский ботаник Р. Броун впервые описал ядро растительной клетки, а в 1833 году установил, что ядро является обязательным органоидом клетки растения. С тех пор главным в организации клеток считается не мембрана, а содержимое.
Клеточная теория строения организмов была сформирована в 1839 году немецким зоологом Т. Шванном и М. Шлейденом и включала в себя три положения. В 1858 году Рудольф Вирхов дополнил её ещё одним положением, однако в его идеях присутствовал ряд ошибок: так, он предполагал, что клетки слабо связаны друг с другом и существуют каждая «сама по себе». Лишь позднее удалось доказать целостность клеточной системы.
В 1878 году русским учёным И. Д. Чистяковым открыт митоз в растительных клетках; в 1878 году В. Флемминг и П. И. Перемежко обнаруживают митоз у животных. В 1882 году В. Флемминг наблюдает мейоз у животных клеток, а в 1888 году Э Страсбургер - у растительных.

18. Клеточная теория - одно из общепризнанных биологических обобщений, утверждающих единство принципа строения и развития мира растений , животных и остальных живых организмов с клеточным строением , в котором клетка рассматривается в качестве общего структурного элемента живых организмов.