Магнитный пускатель – назначение устройства, принцип действия и схема подключения своими руками. Обзор лучших производителей оборудования. Принцип работы и назначение магнитного пускателя Магнитные пускатели старого образца

16.10.2023 Ремонт

Магнитные пускатели предназначены, главным образом, для дистанционного управления трехфазными асинхронными электродвигателями с короткозамкнутым ротором, а именно:

  • для пуска непосредственным подключением к сети и остановки (отключения) электродвигателя (нереверсивные пускатели),
  • для пуска, остановки и реверса электродвигателя (реверсивные пускатели).

Кроме этого, пускатели в исполнении с тепловым реле осуществляют также защиту управляемых электродвигателей от перегрузок недопустимой продолжительности.

Магнитные пускатели открытого исполнения предназначены для установки на панелях, в закрытых шкафах и других местах, защищенных от попадания пыли и посторонних предметов.

Магнитные пускатели защищенного исполнения предназначены для для установки внутри помещений, в которых окружающая среда не содержит значительного количества пыли.

Магнитные пускатели пылебрызгонепроницаемого исполнения предназначены как для внутренних, так и для наружных установок в местах, защищенных от солнечных лучей и от дождя (под навесом).

Магнитный пускатель серии ПМЛ

Устройство магнитного пускателя

Магнитные пускатели имеют магнитную систему , состоящую из якоря и сердечника и заключенную в пластмассовый корпус. На сердечнике помещена втягивающая катушка . По направляющим верхней части пускателя скользит траверса, на которой собраны якорь магнитной системы и мостики главных и блокировочных контактов с пружинами .

Принцип работы пускателя прост : при подаче напряжения на катушку якорь притягивается к сердечнику, нормально-открытые контакты замыкаются, нормально-закрытые размыкаются. При отключении пускателя происходит обратная картина: под действием возвратных пружин подвижные части возвращаются в исходное положение, при этом главные контакты и нормально-открытые блокконтакты размыкаются, нормально-закрытые блокконтакты замыкаются.

Реверсивные магнитные пускатели представляют собой два обычных пускателя, укрепленных на общей основании (панели) и имеющем электрические соединения, обеспечивающие электрическую блокировку через нормально-замкнутые блокировочные контакты обоих пускателей, которая предотвращает включение одного магнитного пускателя при включенном другом.

Самые распространенные схемы включения нереверсивного и реверсивного магнитного пускателя смотрите здесь: . В этих схемах предусмотрена нулевая защита с помощью нормально-открытого контакта пускателя, предотвращающая самопроизвольное включение пускателя при внезапном появлении напряжения.

Реверсивные пускатели могут также иметь механическую блокировку , которая располагается под основание (панелью) пускателя и также служит для предотвращения одновременного включения двух магнитных пускателей. При электрической блокировке через нормально-замкнутые контакты самого пускателя (что предусмотрено его внутренними соединениями) реверсивные пускатели надежно работают и без механической блокировки.

Реверсивный магнитный пускатель

Реверс электродвигателя при помощи реверсивного пускателя осуществляется через предварительную остановку, т.е. по схеме: отключение вращающегося двигателя - полная остановка - включение на обратное вращения. В этом случает пускатель может управлять электродвигателем соответствующей мощности.

В случае применения реверсирования или торможения электродвигателя противовключением его мощность должна быть выбрана ниже в 1,5 - 2 раза максимальной коммутационной мощности пускателя, что определяется состоянием контактов, т.е. их износоустойчивостью, при работе в применяемом режиме. В этом режиме пускатель должен работать без механической блокировки. При этом электрическая блокировка через нормально-замкнутые контакты магнитного пускателя обязательна.

Магнитные пускатели защищенного и пылебрызгонепроницаемого исполнений имеют оболочку. Оболочка пускателя пылебрызгонепроницаемого исполнения имеет специальные резиновые уплотнения для предотвращения попадания внутрь пускателя пыли и водяных брызг. Входные отверстия в оболочку закрыты специальными пробами с применением уплотнений.

Тепловые реле

Ряд магнитных пускателей комплектуется тепловыми реле , которые осуществляют тепловую защиту электродвигателя о перегрузок недопустимой продолжительности. Регулировка тока уставки реле - плавная и производится регулятором уставки путем поворота его отверткой. Здесь смотрите про . В случае невозможности осуществления тепловой защиты в повторно-краковременном режиме работы следует применять магнитные пускатели без теплового реле. От коротких замыканий тепловые реле не защищают

Тепловые реле

Схема прямого пуска и защиты асинхронного двигателя с короткозамкнутым ротором (а), (б) – пусковая характеристика двигателя (1) и защитная характеристика теплового реле (2)

Монтаж магнитных пускателей

Для надежной работы монтаж магнитных пускателей должен производится на ровной, жестко укрепленной вертикальной поверхности. Пускатели с тепловым реле рекомендуется устанавливать при наименьшей разности температуры воздуха, окружающего пускатель и электродвигатель.

Что бы не допустить ложных срабатываний не рекомендуется устанавливать пускатели с тепловым реле в местах подверженных ударам, резким толчкам и сильной тряске (например, на общей панели с электромагнитными аппаратами на номинальные токи более 150 А), так как при включении они создают большие удары и сотрясения.

Для уменьшения влияния на работу теплового реле дополнительного нагрева от посторонних источников тепла и соблюдении требования о недопустимости температуры окружающего пускатель воздуха более 40 о рекомендуется не размещать рядом с магнитными пускателями аппараты теплового действия ( и т.д.) и не устанавливать их с тепловым реле в верхних, наиболее нагреваемых частях шкафов.

При присоединении к контактному зажиму магнитного пускателя одного проводника его конец должен быть загнут в кольцеобразную или П-образную форму (для предотвращения перекоса пружинных шайб этого зажима). При присоединении к зажиму двух проводников примерно равного сечения их концы должны быть прямыми и распологаться по обе стороны от зажимного винта.

Присоединяемые концы медных проводников должны быть залужены. Концы многожильных проводников перед лужением должны быть скручены. В случае присоединения алюминиевых проводов их концы должны быть зачищены мелким надфилем под слоем смазки ЦИАТИМ или технического вазелина и дополнительно покрыты после зачистки кварцевазилиновой или цинко-вазелиновой пастой. Контакты и подвижные части магнитного пускателя смазывать нельзя.

Перед пуском магнитного пускателя необходимо произвести его наружный осмотр и убедится в исправности всех его частей, а также в свободном передвижении всех подвижных частей (от руки), сверить номинальное напряжение катушки пускателя с напряжением, подаваемым на катушку, убедится, что все электрические соединения выполнены по схеме.

При использовании пускателей в реверсивных режимах, нажав от руки подвижную траверсу до момента соприкосновения (начало замыкания) главных контактов, проверить наличие раствора нормально-замкнутых контактов, что необходимо для надежной работы электрической блокировки.

У включенного магнитного пускателя допускается небольшое гудение электромагнита , характерное для шихтованных магнитных систем .

Уход за магнитными пускателями в процессе эксплуатации

Уход за пускателями должен заключаться, прежде всего, в защите пускателя и теплового реле от пыли, грязи и влаги . Необходимо следить, чтобы винты контактных зажимов были плотно затянуты. Надо также проверять состояние контактов.

Контакты современных магнитных пускателей особого ухода не требуют. Срок износа контактов зависит от условий и режима работы пускателя. Зачистка контактов пускателей не рекомендуется, так как удаление контактного материала при зачистке приводит к уменьшению срока службы контактов. Только в отдельных случаях сильного оплавления контактов при отключении аварийного режима электродвигателя допускается их зачистка мелким надфилем.

При появлении после длительной эксплуатации магнитного пускателя гудения, носящего, характер дребезжания, необходимо чистой ветошью очистить от грязи рабочие поверхности электромагнита, проверить наличие воздушного зазора, а также проверить отсутствие заеданий подвижных частей и трещин на короткозамкнутых витках, расположенных на сердечнике.

При разборке и последующей сборке магнитного пускателя следует сохранять взаимное расположение якоря и сердечника, бывшее до разборки, так как их приработавшиеся поверхности способствуют устранению гудения. При разборках магнитных пускателей необходимо чистой и сухой ветошью протирать пыль с внутренних и наружных поверхностей пластмассовых деталей пускателя.

Пускатель (МЭС 441-14-38) - комбинация всех коммутационных устройств, необходимых для пуска и остановки двигателя, с защитой от перегрузки.


Электромагнитный пускатель (магнитный пускатель) - пускатель, у которого сила, необходимая для замыкания главных контактов, обеспечивается электромагнитом.


Магнитный пускатель (МП) - самый распространенный электрический аппарат для пуска электрических двигателей. Его основные достоинства: дистанционное управление пусками, простота схем, защита от снижения напряжения и перегрузки, приемлемые массогабаритные параметры, которые можно назвать внешними свойствами, поскольку они в определенной мере влияют на качество всей системы. 


Внешние свойства МП постоянно совершенствуются (к примеру, в России недавно была запатентована схема МП с защитой от обрыва фазы сети). Крупные производители, представляющие эту продукцию в России: ОАО «Кашинский завод электроаппаратуры», 000 «Уралэлектроконтактор», ОАО «Новосибирский завод низковольтной аппаратуры», ОАО «Чебоксарский электроаппаратный завод» (Россия), EKFelectrotechnica (Россия), SchneiderElectric (Франция), GeneralElectric (США), Moeller (Германия), АВВ (Германия), Siemens (Германия), Legrand (Франция), ChintGroupCo (Китай) и др..


Магнитные пускатели выбирают в зависимости от условий окружающей среды и схемы управления по:


Номинальному напряжению;


Номинальному току;


Току нагревательного элемента теплового реле;


Напряжению втягивающей катушки.


Uмп ≥ Uн уст; (1.1)
Iмп ≥ Iн уст, (1.2)


где Uмп, Iмп - соответственно номинальные значения напряжения (В) и тока (А) магнитного пускателя;


Uн уст, Iн уст - соответственно номинальные значения напряжения (В) и тока (А) электроустановки.


Тепловые реле проверяют на соответствие их номинального тока 1тр н, номинального тока нагревательного элемента Iнэ, верхнего Iуст max и нижнего Iуст min пределов регулирования тока уставки и выставленного тока уставки Iуст р номинальному току двигателя Iн дв:


Iтр н ≥ Iнэ ≥ Iн дв; (1.3)
Iуст max ≥ Iн дв ≥ Iуст min; (1.4)
Iуст р = Iн дв. (1.5)


Для электродвигателей с малым коэффициентом загрузки и рабочим током Iр дв в целях повышения надежности защиты используют соотношение:


Номинальный фазный ток электродвигателя Iн дв или по принятым в электрических машинах условным обозначениям – I1 ном ф определяют по формуле:



где Р2 ном - номинальная мощность электродвигателя, кВт;


U1л - номинальное линейное напряжение, В;


м - коэффициент полезного действия, о.е.;


cos ф - коэффициент мощности, о.е.


Наиболее общим и распространенным требованием, которое предъявляет потребитель при выборе МП, является величина коммутируемого тока, и по этому параметру МП указанных выше производителей можно разделить на несколько групп:


1) МП с токами (речь идет о предельных значениях токов) до 100 А, и сюда относятся МП серии ПМЛ на токи 10-80 А, серии ПМУ на токи 9-95 А;


2) МП с токами до 400 А, представителями которой являются МП серии ПМА на токи 40-160 А, серии ПМ12 на токи 10-250 А (Россия) и зарубежные магнитные пускатели ChintGroupCo серии NC1 и NC3 на токи 9-370 А;


3) МП с токами до 1000 А, представителями которой являются МП фирмы Moeller серии DIL на токи 20-855 А;


4) МП с токами выше 1000 А, к которым относятся МП GE Power Controls серии CL и CK на токи 25-1250 А и МП ЧЭАЗ-Benedikt на токи 10-1200 А.


Помимо прочего, для коммутации токов от 100 А до 1000 А российские производители предлагают контакторы серии КТ-6000, МК6 и вакуумные контакторы серии КВ1 и КТ12 для общепромышленного использования. В таблице 1.1 представлены показатели МП первой группы, как наиболее массовой. 


Для приведенных на рисунке 1.1 МП, относящихся к 1, 2, 3 и 4 группам, соответствующие им показатели представлены в таблице 1.





Рис. 1.1.


Анализ характеристик (см. табл. 1.1) показывает, что все МП имеют практически совпадающие параметры (отличия несущественны). При этом, как правило, при выборе МП ориентируются на два основополагающих показателя: режим работы и мощность нагрузки. Однако при жестких ограничениях на размеры, предпочтение следует отдать МП № 7 и № 5, габариты которых почти в полтора раза меньше, чем у остальных, при прочих равных параметрах.


По мощности, потребляемой катушками при включении, наиболее экономичным является МП № 6, при этом экономия составляет от 13 до 30 %. По общему ресурсу работы предпочтение следует отдать МП № 1, 2, 3, 6. По ориентировочной стоимости лидируют МП № 1 и № 2, так как стоимость остальных МП существенно выше.


Необходимо отметить, что на практике, особенно при использовании МП в системах АСУ, предпочтение отдается импортным аппаратам, т.к. их вспомогательные контакты обеспечивают так называемый «сухой контакт», используемый в устройствах микропроцессорной техники.


Помимо этого, к несомненным преимуществам импортных МП следует отнести:


Исполнение МП с катушками постоянного тока (исключение составляет ОАО «ВНИИР», которое поставляет пускатели ПМ12 с катушками постоянного тока);


Таблица 1.1 Технические характеристики магнитных пускателей

Номенклатура МП

Мощность дви­гателя, кВт

Мощность, потребляемая катушками при включении, ВА

Мощность, потребляемая катушками при удержании, ВА

Механическая износостойкость, частота включе­ний в час

Общий ресурс, млн. циклов

Коммутационная износостойкость, частота включе­ний в час

Время срабаты­вания: замыка­ние, мс

Время срабаты­вания: размыка­ние, мс

Минимальная вкл. способ­ность: напряже­ние В,/ток А

Габариты, ВхШхЦ мм

Масса, кг

Очень широкий набор не только типовых аксессуаров для МП (вспомогательные контактные блоки, тепловые реле, ограничители перенапряжений), но и всевозможных приспособлений, значительно упрощающих монтаж и обслуживание аппаратов.


Учитывая тот факт, что бесперебойная работа электрического двигателя в значительной степени зависит от надежности МП, заслуживает отдельного рассмотрения такой важный показатель надежности, как коэффициент технической готовности. Этот показатель учитывает не только интенсивность отказов, но и время, требуемое для восстановления работоспособности МП, характеризуя вероятность того, что в нужный момент аппарат сработает, и система выполнит требуемые задачи. Для большинства МП, приведенных в таблице 1.1, производители не указывают в технических характеристиках изделия такие показатели, как среднее время наработки на отказ или частоту отказов. Однако накопленные статистические данные работы указанных выше серий МП позволяют получить следующие осредненные данные по коэффициенту готовности: для МП российского производства № 1, 3, 7 (табл. 1.1) коэффициент готовности равен 0,9905, для МП украинского производства № 2 - 0,9812, а для импортных МП № 4, 5, 6 - 0,9383. Таким образом, на объектах повышенной важности, где требуется высокая надежность, целесообразнее применять МП № 1,3,7.


С учетом исключительно широкого распространения МП большое значение приобретает снижение мощности, потребляемой ими. В электромагнитном пускателе мощность расходуется в электромагните и тепловом реле. Потери в электромагните составляют примерно 60 %, в тепловых реле - 40 %. С целью снижения потерь в электромагните применяется холоднокатаная сталь Э-310. МП серии ПМЛ и ПМ12 обладают коммутационной способностью до 20* 106 операций и частотой включений до 1200 в час (табл. 1.1). Выбор МП осуществляется по номинальному напряжению сети, номинальному напряжению питания катушек и номинальному коммутируемому току электроприемника.


Допускается МП выбирать по «величине пускателя»: 1 величина - 10 А, 4,5 кВт; 2 величина - 25 А, 11 кВт, 3 величина - 40 А, 18 кВт; 4 величина - 63 А, 30 кВт; 5 величина - 100 А, 45 кВт; 6 величина - 160 А, 75 кВт; 7 величина - 250 А, 110 кВт.


Это термин характеризует допустимый ток МП через силовые контакты при напряжении 380 Вольт и в режиме работы пускателя АС-3.


Категории применения МП: АС-1 - нагрузка МП активная или мало индуктивная; АС-3 - режим прямого пуска двигателя с короткозамкнутым ротором, отключение вращающегося двигателя; АС-4 - пуск электродвигателя с короткозамкнутым ротором, отключение неподвижных или медленно вращающихся двигателей, торможение противотоком.


На корпусах МП указываются все необходимые параметры. Это позволяет во время монтажа проверять соответствие монтируемого МП для конкретной схемы. У импортных МП указывается в качестве основного параметра не «величина пускателя», а мощность, на которую в различных условиях рассчитан МП. Чаще это оказывается удобней при выборе нужного МП.


Конструкция многих МП предусматривает возможность быстрого навесного монтажа на них: дополнительных нормально замкнутых или нормально разомкнутых контактов; реле задержек ON или OFF со временем задержки до 160 с; тепловых реле.


Электромагнитные пускатели серии ПМЛ предназначены для дистанционного пуска непосредственным подключением к сети, остановки и реверсирования трехфазных асинхронных электродвигателей с короткозамкнутым ротором при напряжении до 660В переменного тока частотой 50 Гц, а в исполнении с трехполюсными тепловыми реле серии РТЛ - для защиты управляемых электродвигателей от перегрузок недопустимой продолжительности и от токов, возникающих при обрыве одной из фаз. МП могут комплектоваться ограничителями перенапряжений типа ОПН. При такой комплектации МП пригодны для работы в системах управления с применением микропроцессорной техники при шунтировании включающей катушки помехоподавляющим устройством или при тиристорном управлении. Номинальное переменное напряжение включающих катушек: 24, 36, 40, 48, 110, 127, 220, 230, 240, 380, 400, 415, 500, 660В частоты 50 Гц и 110, 220, 380, 400, 415, 440В частоты 60 Гц. МП типа ПМЛ на токи 10...63 А имеют прямоходовую магнитную систему Ш-образного типа. Контактная система расположена перед магнитной. Подвижная часть электромагнита составляет одно целое с траверсой, в которой предусмотрены подвижные контакты и их пружины. Тепловые реле серии РТЛ подсоединяются непосредственно к корпусам пускателей.


Структура маркировки МП типа ПМЛ.


ПМЛ-Х1 Х2 Х3 Х4 Х5 Х6 Х7 Х8:


ПМЛ - серия электромагнитных пускателей;


X1 - величина пускателя по номинальному току;


1 - 10 (16) А; 2- 25 А; 3 - 40 А; 4 - 63 (80) А; 5 - 125 А; 6 - 160 А; 7 - 250 А.


X2 - исполнение МП по назначению и наличию теплового реле:


1- нереверсивный МП без теплового реле;


2- нереверсивный МП с тепловым реле;


5 - реверсивный МП без теплового реле с механической блокировкой для степени защиты IP00, IP20 и с электрической и механической блокировками для степени защиты IP40, IP54;


6 - реверсивный МП с тепловым реле с электрической и механической блокировками;


7 - МП со схемой звезда-треугольник степени защиты IP54 (МП для трехфазного асинхронного двигателя, в пусковом положении которого обмотки статора соединяются звездой, а в рабочем положении - треугольником).


X3 - исполнение МП по степени защиты и наличию кнопок управления и сигнальной лампы:


0 - IP00; 1 - IP54 без кнопок; 2 - IP54 с кнопками «Пуск» и «Стоп»;


3 - IP54 с кнопками «Пуск», «Стоп» и сигнальной лампой (изготавливается только на напряжения 127, 220 и 380 В, 50 Гц);


4 - IP40 без кнопок; 5 - IP40 с кнопками «Пуск» и «Стоп»; 6 - IP20.


X4 - число и вид контактов вспомогательной цепи:


0 - 1з (на ток 10 и 25 А), 1з + 1р (на ток 40 и 63 А), переменный



1 - 1р (на ток 10 и 25 А), переменный ток;


2 - 1з (на ток 10, 25, 40 и 63 А), переменный ток;


5 - 1з (на 10 и 25 А), постоянный ток;


6 - 1р (на ток 10 и 25 А), постоянный ток).


X5 - сейсмостойкое исполнение МП (С);


X6 - исполнение МП с креплением на стандартные рейки Р2-1 и



X7 - климатическое исполнение (О) и категория размещения (2, 4); X8 - исполнение по коммутационной износостойкости (А, Б, В). МП серии ПМЛ (рис. 1.2) состоят из неподвижной части (рис. 1.2, поз. 2), закрепленной в основании, и подвижной части (рис. 1.2, поз. 3) с контактами для коммутации силовой цепи. Управление работой МП осуществляется с помощью электромагнитной катушки


управления (рис. 1.2, поз. 4), расположенной на среднем стержне неподвижной части Ш-образного магнитопровода.


Под воздействием электромагнитного поля втягивающей катушки (рис. 1.2, поз. 4), возникающего при протекании через нее тока, происходит смыкание двух частей магнитопровода (рис. 1.2, поз. 3, 4) с преодолением сопротивления возвратной пружины (рис. 1.2, поз. 9), а также пружин подвижных контактов. При этом контакты смыкаются и происходит коммутация устройства.




Рис. 1.2.


1 - основание из термостойкой пластмассы; 2 - неподвижная часть магнитопровода; 3 - подвижная часть магнитопровода; 4 - электромагнитная катушка управления; 5 - контактные зажимы; 6 - металлическая платформа (для пускателей номиналом свыше 25 А); 7 - траверса с подвижными контактами; 8 - крепежный винт; 9 - возвратная пружина; 10 - алюминиевые кольца; 11 - неподвижный контакт; 12 - зажим с насечкой для фиксации проводника


На МП можно установить 2-контактную или 4-контактную приставку с различным набором размыкающих и замыкающих контактов. Контактные приставки (КП) механически соединяются с МП со стороны входных зажимов (сверху) и фиксируются над траверсой МП. Способ крепления обеспечивает жесткую и надежную связь между КП и МП.


Контактная приставка серии ПКЛ (рис. 1.3) предназначена для увеличения количества вспомогательных контактов в схемах управления электроприводами до 440 В постоянного тока и до 660 В перемен


ного тока частотой 50 и 60 Гц. КП устанавливаются на МП серий ПМЛ-1000.. .ПМЛ-4000 и на промежуточные реле серии РПЛ. Структура условного обозначения КП серии ПКЛ ПКЛ-Х1 Х2 Х3 Х4 4 Х5:


ПКЛ - условное обозначение серии;


Х1 - количество замыкающих контактов (0; 1; 2; 4);


Х2 - количество размыкающих контактов (0; 1; 2; 4);


Х3 - исполнение приставки по степени защиты;






Рис. 1.3


Х4 - климатическое исполнение О, ОМ по ГОСТ 15150-69;



Х5 - исполнение по коммутационной износостойкости в режиме нормальных коммутаций:


A - 3-106 циклов; Б - 1,6-106 циклов.


Реле промежуточные (РП) серии РПЛ (рис. 1.4) предназначены для применения в качестве комплектующих изделий в стационарных установках, в основном в схемах управления электроприводами при напряжении до 440 В постоянного тока и до 660 В переменного тока частотой 50 и 60 Гц. Реле пригодны для работы в системах управления с применением микропроцессорной техники при шунтировании втягивающей катушки ограничителем ОПН или при тиристорном управлении. При необходимости, на РП может быть установлена одна из приставок ПКЛ или ПВЛ. РП исполнения М допускают также установку одной или двух приставок боковых ПКБ. Номинальный ток контактов -16 А.


Структура условного обозначения РП серии РПЛ РПЛ-Х1 Х2 Х3 Х4 Х5 4 Х6:


РПЛ - условное обозначение серии;


Х1 - исполнение реле по роду тока цепи управления:


1 - с управлением на переменном токе;


Х2 - количество замыкающих контактов;


Х3 - количество размыкающих контактов;


Х4 - исполнение приставки по степени защиты:


М - исполнение со степенью защиты IP20;


Отсутствие буквы означает приставку со степенью защиты IP00;




Рис. 1.4.


Х5 - климатическое исполнение О, ОМ по ГОСТ 15150-69;



Х6 - Исполнение по коммутационной износостойкости в режиме нормальных коммутаций: A - 3⋅10 6 циклов; Б - 1,6⋅10 6 циклов.


Приставка памяти ППЛ-04 превращает РП серии РПЛ в двустабильное. Она состоит из электромагнита и защелки, которая позволяет удерживать контактную систему реле во включенном положении после обесточивания обмотки реле. При подаче напряжения на обмотку приставки памяти происходит освобождение защелки, и РП возвращается в состояние, соответствующее начальному состоянию одностабильного РП.


Приставки выдержки времени пневматические серии ПВЛ (рис. 1.5) или просто «приставка» предназначены для создания выдержки времени при включении или отключении МП. Приставки могут устанавливаться только на реле РП серии РПЛ и на МП серии ПМЛ-1000...ПМЛ-4000.


Приставка устанавливается сверху МП, скользя по направляющим до упора, при этом защелка приставки своими выступами заходит за выступы на корпусе МП. Способ крепления обеспечивает жесткую и надежную связь между приставкой и МП. 




Рис. 1.5.


Приставки серии ПВЛ выпускаются: с диапазоном выдержек времени от 0,1 до 15 с, от 0,1 до 30 с, от 10 до 100 с и от 10 до 180 с; со степенью защиты IP00 и IP20, в двух исполнениях по износостойкости: А - 3⋅10 6 циклов; Б - 1,6⋅10 6 циклов.


Для увеличения количества вспомогательных контактов цепи управления МП (при установленной приставке серии ПВЛ) применяется приставка бокового крепления серии ПКБ. Основные характеристики приставок серии ПВЛ приведены в таблице 1.2.


Реле серии РТЛ (далее «реле») предназначены для защиты трехфазных асинхронных двигателей с короткозамкнутым ротором от токов перегрузок недопустимой продолжительности, в том числе возникающих от асимметрии токов в фазах и от выпадения одной из фаз.

Реле могут крепиться непосредственно к МП серии ПМЛ или устанавливаться индивидуально на рейке или крепиться винтами к панели. Индивидуальная установка реле осуществляется с помощью клеммников типа КРЛ (до 100А).На токи до 93 А используются реле РТЛ-1000, 2000, 2000Д.


Габаритные и установочные размеры реле типа РТЛ-1000 и РТЛ-2000 приведены на рисунке 1.6.


Структура условного обозначения реле серии РТЛ.


РТЛ-Х1 ХХХ2 Х3 Х4 Х5 Х6 4:


РТЛ - буквенное обозначение серии реле;


Х1 - цифра, обозначающая номинальный ток реле:


1 - исполнение на токи до 25А; 2 - исполнение на токи до 93А;


ХХХ2 - цифры, обозначающие диапазон токов уставки (см. табл.1.3);


Х3 - исполнение реле с уменьшенными габаритными размерами:


Д - буква, обозначающая исполнение реле РТЛ-2000 для установки с магнитными пускателями ПМЛ-4160ДМ, ПМЛ-4560ДМ;


К - буква, обозначающая исполнение реле РТЛ-2000 для установки с магнитными пускателями ПМЛ-3000Д;


М - буква, обозначающая исполнение реле со степенью защиты контактных зажимов IP20 по ГОСТ 14255-69;


Х4 - способ возврата реле: 1 - ручной возврат; 2 - самовозврат;


Х5 - класс расцепления: В - класс расцепления 10, отсутствие буквы - класс расцепления 10А;


Х6 - климатическое исполнение О, ОМ по ГОСТ 15150-69;



Допускается эксплуатация реле при встройке в оболочку МП или комплектного устройства для исполнения УХЛ3.


Основные характеристики реле серии РТЛ приведены в таблице 1.3.





Рис. 1.6. а) РТЛ-1000 и в) РТЛ-2000 - для подсоединения к контактору; б) РТЛ-1000 и г) РТЛ-2000 - для индивидуальной установки с клеммником типа КРЛ-1и 2, соответственно 


По аналогии с реле серии РТЛ реле электротепловые серий РТЛ-М и РТЛ-М2 (рис. 1.7) предназначены, в первую очередь, для защиты от перегрузки асинхронных электродвигателей с короткозамкнутым ротором и используются совместно с контакторами ПМЛ и ПМЛ-Н в составе МП. Реле изготавливаются в двух габаритах, используемых с соответствующей группой контакторов. Корпус выполнен из термостойкой литьевой пластической массы и состоит из основания и крышки. Конструкция реле - «насыпная» и в основание при сборке закладывают заранее заготовленные функциональные узлы: термобиметаллические пластинчатые нагреватели с приваренными к ним жесткими выводами для подключения к контактору и выходным зажимам, рейку сброса, механизм управления с мостиковыми контактами цепей «вторичной» коммутации.

Таблица 1.3 Технические характеристики реле серии РТЛ

Номинальный ток пускателя, А

Пределы регулирова­ния тока несрабатыва­ния, А

Номинальное напря­жение, В

Мощность потребляемая одним полюсом, Вт

Мощность электродвигателя, кВт при напряжении, В

50 Гц, 60 Гц

РТЛ2061ДМ04

РТЛ2063ДМ04



Рис. 1.7.


В конструкцию реле заложен механизм ускорения срабатывания при резких перегрузках, что дает возможность практически исключить выход из строя защищаемого электродвигателя при внезапном заклинивании ротора или разрушении подшипников. Все исполнения реле имеют регулирование по току срабатывания, что дает возможность точно выставить уставку под конкретного потребителя (электропривод, технологическая установка и т.д.).


Серия РТЛ-М перекрывает диапазон токов 0,1-80 А и имеет 20 исполнений, несколько проще конструктивно, чем РТЛ-М2, так как не имеет переключателя «Ручной автоматический» (рис. 1.8) возврата в исходное состояние после срабатывания.




Рис. 1.8. : а) – РТЛ 1001- М–РТЛ 2063- М; б) – РТЛ 1001- М2– РТЛ 2065- М2


Серия РТЛ-М2 перекрывает диапазон токов 0,1-93 А и имеет 21 исполнение.


Преимущества реле РТЛ-М и РТЛ-М2:


Реле фиксируются с помощью специального выступа и жестких выводов силового присоединения непосредственно МП;


Серии выполнены в двух габаритах: габарит 1 стыкуется с МП серии ПМЛ на ток до 25 А, габарит 2 - для МП на ток от 40-95А;


Наличие двух групп свободных контактов: 95-96 - на размыкание, 97-98 - на замыкание;


Два режима возврата механизма реле в исходное состояние после остывания термобиметаллических нагревателей: ручной кнопкой «Reset», автоматический;


Наличие механизма ускорения на 40 % срабатывания при больших токах перегрузки или перекосе фаз с элементами термокомпенсации;


Возможность пломбирования реле после настройки под рабочие параметры защищаемого оборудования.


Тепловые реле перегрузки серии РТЛ. У торговой марки Telemecanique компании Schneider Electric разработаны для защиты цепей переменного тока и электродвигателей от перегрузки, асимметрии фаз, затянутого пуска и заклинивания ротора и могут устанавливаться непосредственно под МП серии ПМУ (рис. 1.9). 





Рис. 1.9.


Реле типа: РТЛ1У перекрывают диапазон токов 0,1-25 А и имеет 14 исполнений; РТЛ2У перекрывают диапазон токов 23-40 А и имеет 3 исполнения; РТЛ3У перекрывают диапазон токов 17-104 А и имеет 7 исполнений и РТЛ4У перекрывают диапазон токов 51-630 А и имеет 10 исполнений.


Среднее время срабатывания в зависимости от кратности тока уставки для реле серии РТЛ.У приведено на рисунке 1.10.


Преимущества реле серии РТЛ.У:


Реле имеют встроенную защиту от обрыва или пропадания фазы, заклинивания ротора в виде механической системы «коромысел»;


Реле имеют два режима: ручной (взвод реле по нажатию кнопки) и автоматический (самопроизвольный взвод реле после остывания биметаллических пластин);


В реле есть функция «Тестирование» (имитация срабатывания теплового реле без перегрузки);


Токовые уставки выставляются поворотом диска. Диск закрывается прозрачной крышкой, которая может быть опломбирована;


Реле РТЛ1У-РТЛ3У имеют подвижные контактные выводы, что позволяет легко подключать их к разным типоразмерам МП типа ПМУ09-95 без использования дополнительных инструментов;


Реле РТЛ4У крепится отдельно от контактора. Электрическое соединение осуществляется с помощью проводов.





Рис. 1.10. : 1 - симметричный трехфазный режим из холодного состояния; 2 - симметричный двухфазный режим из холодного состояния; 3 - симметричный трехфазный режим после длительного протекания тока, равного току уставки (горячее состояние); 4 - три фазы из горячего состояния (максимальная уставка); 5 - три фазы из горячего состояния (минимальная уставка)


Для изменения уставок реле серии РТЛ.У необходимо открыть прозрачную крышку (рис. 1.11, поз. 1) над диском регулировки установок. Установить ток уставки в амперах вращением диска (рис. 1.11, поз. 1).


Для изменения режима повторного взвода необходимо предварительно открыть прозрачную крышку и осуществить поворот синего переключателя «СБРОС» (рис. 1.11, поз. 4):


Поворот влево (рис. 1.12, а) - ручной повторный взвод;


Поворот вправо (рис. 1.12, б) - автоматический повторный взвод.


Переключатель «СБРОС» остается в положении автоматического


повторного взвода до принудительного возврата в положение ручного повторного взвода. При закрытии крышки переключатель блокируется. Ручной повторный взвод осуществляется нажатием на синюю кнопку «СБРОС». 




Рис. 1.11.




Рис. 1.12.

Функция «Остановка» приводится в действие нажатием красной кнопки «СТОП» (рис. 1.11, поз. 5). Нажатие кнопки «СТОП» (рис. 1.13, а):


Изменяет состояние нормально открытого (НО) контакта;


Не изменяет состояние нормально закрытого (НЗ) контакта. Кнопка «СТОП» может блокироваться U-образной скобой


(рис. 1.13, б). При закрытии крышки устройство блокируется.




Рис. 1.13.




Рис. 1.14.


Функция «Тестирование» приводится в действие нажатием отверткой на красную кнопку «ТЕСТ» (рис. 1.11, поз. 6). Нажатие кнопки «ТЕСТ» (рис. 1.14, а) имитирует срабатывание реле при перегрузке и:


Изменяет положение НО и НЗ контактов;


Изменяет положение (рис. 1.14, б) индикатора срабатывания реле (рис. 1.11, поз. 7).


Тепловые реле перегрузки типа LRD и LR97 серии D торговой марки Telemecanique разработаны для защиты цепей переменного тока и электродвигателей (с номинальным током 0,1-150 А) от перегрузки, асимметрии фаз, затянутого пуска и заклинивания ротора и могут устанавливаться непосредственно под МП типа LC1: LC - обозначение основного модуля контактора серии Tesys, 1 - нереверсивный контактор.


Реле класса 10А типа: LRD-01-35 (№° по каталогу) перекрывают диапазон токов 0,1-38 А и имеет 16 исполнений; LRD-3322-3365 перекрывают диапазон токов 17-104 А и имеет 8 исполнений; LRD-4365-4369 перекрывают диапазон токов 80-140 А и имеет 3 исполнения.


Комплект для монтажа (рис. 1.15, а, поз.1) предназначен для прямого присоединения НЗ контакта реле LRD (рис. 1.15, а, поз. 2) к МП типа LC1 (рис. 1.15, а, поз. 3).


Клеммный блок (рис. 1.15, б, поз. 1) предназначен для монтажа реле LRD (рис. 1.15, б, поз. 2) на 35 мм рейке или винтового присоединения к монтажной плате (рис. 1.15, б, поз. 3) с посадочным размером 110 мм. Конструкция реле позволяет устанавливать устройство для удаленного отключения или электрического возврата (рис. 1.15, б, поз. 4), а также устройство для удаленного включения или электрического возврата (рис. 1.15, б, поз. 5). Кроме того, на лицевую панель реле можно установить блокировку (рис. 1.15, б, поз. 6) кнопки «Стоп».


С помощью гибких проводников LAD-7305 (рис. 1.15, в, поз. 1) для реле типа LRD (рис. 1.15, в, поз. 2) и LA7-D305 (рис. 1.15, в, поз. 3) для реле LRD-3 (рис. 1.15, в, поз. 4) можно осуществлять удаленное управление функцией «Возврат».


Переходное устройство для механизма блокировки двери (рис. 1.15, г, поз. 1) позволяет осуществлять удаленное управление реле типа LRD (рис. 1.15, г, поз. 2) и LRD-3 (рис. 1.15, г, поз. 3) с помощью рукоятки с пружинным возвратом для кнопки «Стоп» (рис. 1.15, г, поз. 4) и / или для кнопки «Возврат» (рис. 1.15, г, поз. 5).




Рис. 1.15.


Среднее время срабатывания в зависимости от кратности тока уставки для трехполюсного теплового реле перегрузки серии D типа LRD приведено на рисунке 1.16.





Рис. 1.16.


1 - симметричная нагрузка, 3 фазы, из холодного состояния;


2 - симметричная нагрузка, 2 фазы, из холодного состояния;


3 - симметричная нагрузка, 3 фазы, при длительном протекании установленного тока (из горячего состояния)


Электронное реле перегрузки по току LR97 D (рис. 1.17) разработано для наиболее полного обеспечения защиты электродвигателей и дополняет ряд существующих реле типа LRD.


Применение данных электронных реле рекомендуется для обеспечения защиты электродвигателей, работающих в механизмах с повышенным моментом нагрузки, а также устройств, обладающих большой инерцией или имеющих высокую вероятность заклинивания в установившемся режиме работы:


Конвейеры, дробилки и смесители;


Вентиляторы, насосы и компрессоры;


Центрифуги и сушилки;


Прессы, подъемники, обрабатывающие станки (распилочные, строгальные, протяжные, лентошлифовальные).


Электронное реле может использоваться для обеспечения защиты электродвигателей при затянутом пуске или частых включениях.


Реле LR97 D имеет две защитные функции с предустановленными параметрами: 0,5 с при блокировке ротора электродвигателей и 3 с при пропадании фазы.


Реле LR97 D может быть использовано для обеспечения защиты механической части промышленной установки. Для реализации этой функции устанавливается минимальное значение на диске O-TIME (рис. 1.17, поз. 7), что обеспечивает отключение в течение 0,3 с.





Рис. 1.17. : 1 – кнопка возврата RESET; 2 – кнопка TEST/STOP; 3 – индикатор состояния готовности / работы; 4 – индикатор срабатывания реле; 5 – установка тока LOAD; 6 – установка времени пуска D-TIME; 7 – установка задержки срабатывания O-TIME; 8 – ручная/автоматическая установка повторного взвода; 9 – установка режима: 1-фазный / 3-фазный


Функции контроля и защиты, которое обеспечивает реле LR97 D, наиболее полно соответствуют следующим применениям:


Контроль работы электродвигателей, имеющих значительное пусковое время, с высокой вероятностью тяжелого пуска: электродвигатели с повышенным моментом нагрузки, имеющие значительную инерцию;


Контроль работы электродвигателей в установившемся режиме работы, функция обнаружения повышенного момента нагрузки: (электродвигатели с высокой вероятностью «заедания» или блокировки движущихся частей, электродвигатели с возрастающим моментом);


Контроль механических отказов и повреждений;


Быстрое обнаружение перегрузки по сравнению с устройствами тепловой защиты на основе функции I2t;


Защита электродвигателей при специальных применениях: (затянутый пуск; частые пуски: от 30 до 50 в час); электродвигатели с переменным характером нагрузки при работе в установившемся режиме, когда тепловое реле перегрузки не может быть использовано в силу своих характеристик (инерция «тепловой памяти»).


Реле LR97 D имеет два настроечных диапазона времени:


D-TIME (рис. 1.17, поз. 6): время пуска;


O-TIME: время несрабатывания (максимально допустимое время отклонений при работе в установившемся режиме).


Функция D-TIME используется только при пуске электродвигателя. В момент пуска функция обнаружения перегрузки не задействована, что позволяет запустить электродвигатель без срабатывания реле защиты, даже при значительных перегрузках. При работе в установившемся режиме, когда вследствие перегрузки или пропадания фазы ток превысит заданное значение, реле сработает по истечении времени, введенного с помощью диска O-TIME.


Светодиодный индикатор красного цвета (рис. 1.17, поз. 3) сигнализирует о произошедшем отключении.


Для настройки реле достаточно выполнить 5 простых действий:


Установить максимальные значения на всех трех дисках настройки (LOAD, D-TIME и O-TIME);


Установить на диске D-TIME значение времени, соответствующее времени пуска электродвигателя;


Когда электродвигатель перейдет в режим постоянной нагрузки, установить значение тока поворотом диска LOAD (рис. 1.17, поз. 5) против часовой стрелки до тех пор, пока красный светодиодный индикатор не начнет мигать;


Медленно повернуть диск LOAD по часовой стрелке до тех пор, пока светодиодный индикатор не перестанет мигать;


Установить пороговое время срабатывания реле, используя диск



Для быстрой диагностики состояний предусмотрены два светодиодных индикатора (зеленый и красный), показывающие состояние реле и режимы работы (табл. 1.4).


Электрическая схема включения реле LR97 D, подключенного к контактору KM1 при управлении электродвигателем, приведена на рисунке 1.18.



Рис. 1.18.

Таблица 1.4




Диаграммы работы реле для трех режимов работы электродвигателя: пуска, механического заклинивания ротора и перегрузки, приведены на рисунке 1.19. В момент пуска функция обнаружения перегрузки не задействована, а время пуска, установленное на диске времени D-TIME, больше времени, при котором пусковой ток электродвигателя больше тока уставки (рис. 1.19). Как следствие, реле защиты не срабатывает. Если в процессе работы электродвигателя происходит заклинивание ротора, то по истечению времени, равном 0,5 сек с момента достижением тока в статорных обмотках двигателя значения, равного трехкратному току уставки - происходит срабатывание реле (рис. 1.19).





Рис. 1.19. Диаграмма работы реле LR97 D при пуске и механическом заклинивании ротора, кратковременной и длительной перегрузки


В случае возникновения переменной нагрузки, при которой ток в статорных обмотках электродвигателя в процессе своего изменения не превышает трехкратного тока уставки, а сама длительность изменения тока меньше времени несрабатывания реле O-TIME (рис. 1.19), режим работы реле остается неизменным (защита не срабатывает). Если же время действия переменной нагрузки больше или равно времени несрабатывания реле O-TIME (рис. 1.19), реле защиты срабатывает.


Возврат реле в исходное состояние осуществляется тремя способами: 1- ручным, при помощи кнопки «Возврат» (рис. 1.17); 2 - автоматическим, реализуется с помощью кнопки повторного взвода (рис. 17) через фиксированное время, равное 120 с, за исключением


случаев, когда срабатывание защиты обусловлено пуском ротора (неправильно выбрана уставка времени на диске D-TIME), произошло заклинивание ротора и в случае срабатывания при обрыве фазы; 3 - электрическим, обеспечивается кратковременным отключением подачи питания не менее 0,1 с.


Диаграммы работы реле для случая: пропадания фазы при пуске, обрыва фазы в установившемся режиме работы электродвигателя и перегрузки приведены на рисунке 1.20. Из приведенных диаграмм видно, что при пропадании фазы или ее обрыве реле защиты срабатывает по истечении времени, равном 3 с (предустановленный параметр). В случае перегрузки диаграммы работы реле совпадают с аналогичными приведенными для соответствующих режимов на рис. 1.19.





Рис. 1.20. Диаграмма работы реле LR97 D при пропадании фазы при пуске и установившейся работе электродвигателя, кратковременной и длительной перегрузки


Диаграмма работы реле для случая защиты электродвигателя от механических перегрузок (ударов) со стороны ротора приведена на рисунке 1.21. Как отмечалось выше, для реализации реле защитной функции от механических ударов необходимо на диске O-TIME выбрать уставку, соответствующую минимальному значению, что обеспечит отключение в течение 0,3 с (рис. 1.21). 





Рис. 1.21. Диаграмма работы реле LR97 D при механических перегрузках со стороны ротора электродвигателя


Суть схемы подключения любого МП сводится к управлению питанием его катушки. Известно, что срабатывание и отключение МП (втягивание и возврат силовых контактов) происходит замыканием и размыканием цепи питания катушки.


Схема подключения магнитного пускателя с катушкой управления на напряжение 220 В приведена на рисунке 1.22.





Рис. 1.22.


Питание на катушку магнитного пускателя KM1 поступает через контакты последовательно включенных в ее цепь кнопки «Пуск» - SB2, «Стоп» SB1 и теплового реле P. При нажатии на кнопку «Пуск» ее контакты замыкаются и питание на катушку поступает далее через замкнутые контакты кнопки «Стоп». Сердечник МП притягивает якорь, замыкая силовые подвижные контакты, и на нагрузку подается напряжение. 


При отпускании кнопки «Пуск» цепь катушки не разрывается, так как параллельно SB2 включен блок-контакт KM1 с замкнутыми контактами (якорь магнитного пускателя втянут) - фазное напряжение L3 на катушку будет поступать через них.


Нажатием кнопки «Стоп» цепь питания катушки разрывается, происходит возврат группы подвижных контактов в исходное состояние и нагрузка, таким образом, оказывается обесточенной. То же самое происходит при токовой перегрузке электродвигателя, на нагревательных элементах теплового реле Р выделяется дополнительная тепловая энергия, которая приводит к срабатыванию размыкающего контакта теплового реле, прерывая, в данном случае ноль N, питающий катушку KM1 магнитного пускателя.


Схема подключения магнитного пускателя с катушкой на 380 В приведена на рисунке 1.23.


Различия этих двух схем подключения МП состоят лишь в питающем напряжении катушки. В первом случае, при подключении МП с рабочим напряжением катушки 220 В, для ее питания были использованы ноль и фаза L3, во втором - две питающие фазы L2 и L3.





Рис. 1.23.


Реверсивная схема подключения электродвигателя к питающей сети с помощью МП приведена на рисунке 1.24. Подключение трехфазного электродвигателя по реверсивной схеме бывает востребовано в случаях, когда в процессе его эксплуатации необходимо оперативно изменять направление вращения вала. В отличие от обычной схемы подключения, данная схема содержит два магнитных пускателя, две кнопки «Пуск» и одну «Стоп». 


Изменение направления вращения вала электродвигателя происходит за счет изменения фазировки (порядка подключения фаз) в его электропитании и задается нажатием кнопки «Пуск1» или «Пуск2».


Силовые контакты магнитных пускателей KM1 и KM2 соединены таким образом, что при срабатывании одного из них очередность фаз в питании будет отличаться от фазировки при срабатывании другого.


Работает схема следующим образом: нажатием кнопки «Пуск1» (SB1) замыкается цепь питания катушки KM1, происходит втягивание и замыкание силовых контактов KM1 (на схеме выделены пунктиром) и питание с очередностью фаз L1, L2, L3 поступает на клеммы электродвигателя. Во избежание ошибочного включения кнопки «Пуск2», в цепь катушки KM1 последовательно включен нормально закрытый блок-контакт второго магнитного пускателя KM2.



Рис. 1.24.


Остановка двигателя производится нажатием кнопки «Стоп» (SB3) - ее контакты «разрывают» питающую фазу катушки L3. Прерывание питания катушки KM1 приводит к возврату подвижных силовых контактов этого МП в исходное положение, таким образом, электродвигатель оказывается отключенным.


Нажатием кнопки «Пуск2» (SB2) по аналогии замыкается цепь питания катушки KM2, происходит втягивание и замыкание силовых контактовКМ2 (на схеме выделены синим цветом) и питание, теперь


уже с очередностью фаз L3, L2, L1, поступает на клеммы электродвигателя. Таким образом, вращаться вал электродвигателя теперь будет в противоположном направлении.


Блокировка магнитного пускателя KM1, в случае ошибочного включения кнопки «Пуск1», здесь также осуществляется последовательным включением в цепь питания катушки нормально закрытого блок-контакта другого МП. В данном случае в цепь KM2 последовательно включен нормально закрытый блок-контакт KM1.


Электрическая принципиальная схема нереверсивного МП с реле, со встроенными в оболочку кнопками управления и сигнальными лампами приведена на рисунке 1.25.


Подачей коммутационным аппаратом из распределительного щита (автоматическим выключателем, рубильником) напряжения на клеммы трехполюсного автоматического выключателя QF (светится красная сигнальная лампа HL1) осуществляется подготовка к работе схемы.





Рис. 1.25.


После включения автоматического выключателя (светится зеленая сигнальная лампа HL2) напряжение подается на его клеммы и на главные замыкающие контакты магнитного пускателя КМ. Катушка магнитного пускателя КМ подключается к сети через контакты теплового реле и кнопок управления «Пуск» (SB2) и «Стоп»(SB1). При нажатии кнопки «Пуск» напряжение на катушку магнитного пускателя КМ подается через замкнутые контакты кнопки «Стоп» и замкнутые контакты теплового реле КК. Электрический ток проходит по катушке КМ, создает магнитное поле, которое притягивает якорь к сердечнику, и тем самым замыкает главные и вспомогательные контакты магнитного пускателя КМ, шунтирующие замыкающие контакты кнопки «Пуск», которую после этого можно отпустить. Напряжение подается на обмотки электродвигателя М, и осуществляется его пуск, о чем сигнализирует лампа HL3.


Для отключения электродвигателя нажимается кнопка «Стоп». Катушка теряет питание, после чего якорь под действием возвратных пружин отходит от сердечника, и контакты размыкаются.


При токовой перегрузке электродвигателя на нагревательных элементах теплового реле КК выделяется дополнительная тепловая энергия, которая приводит к срабатыванию размыкающего контакта теплового реле КК, и цепь катушки КМ размыкается.


Электрическая принципиальная схема реверсивного МП с реле, со встроенными в оболочку кнопками управления и сигнальными лампами приведена на рисунке 1.26.





Рис. 1.26. Электрическая принципиальная схема реверсивного МП с реле, со встроенными в оболочку кнопками управления и сигнальными лампами


При нажатии кнопки «Вперед» (SB2) напряжение 380 В на катушку магнитного пускателя КМ1 подается через замкнутые контакты кнопки «Стоп» (SB1) и замкнутые контакты теплового реле КК. Электрический ток управления проходит по катушке КМ1, создает магнитное поле, которое притягивает якорь к сердечнику, и тем самым замыкает главные и вспомогательные контакты магнитного пускателя КМ1, шунтирующие замыкающие контакты кнопки «Вперед». Напряжение подается на обмотки электродвигателя М, и осуществляется его пуск, о чем сигнализирует лампа HL3. Для отключения электродвигателя нажимается кнопка «Стоп».


Изменение направления вращения ротора электродвигателя осуществляется при нажатии кнопки «Назад» SВ3). При этом электрический ток управления проходит по катушке КМ2, замыкаются главные и вспомогательные контакты магнитного пускателя КМ2, шунтирующие замыкающие контакты кнопки SB3. Напряжение подается на обмотки электродвигателя М (светится лампа HL4), но при этом меняется направление вращения магнитного поля (напряжение фазы «А» подается на клемму - «3», а напряжение фазы «С» - на клемму «1» электродвигателя), то есть изменяется порядок чередования фаз.


Во избежание ошибочного включения кнопки «Назад», в цепь катушки KM1 последовательно включен нормально закрытый блок- контакт второго магнитного пускателя KM2.


Наличие механической блокировки в конструкции реверсивного МП предотвращает возникновение короткого замыкания между фазами при одновременном замыкании главных замыкающих контактов магнитных пускателей КМ1 и КМ2. Благодаря этому появление напряжения на катушке второго контактора не приводит к его срабатыванию. Кроме того, после включения магнитного пускателя КМ1 размыкающим контактом КМ1 разрывается цепь катушки магнитного пускателя КМ2, и при нажатии кнопки SB3 не произойдет никаких аварийных режимов. Аналогичная электрическая блокировка есть в цепи катушки КМ1 (размыкающий контакт КМ2).


Следует отметить, что электрическая блокировка может быть выполнена путем использования размыкающих контактов кнопок «Вперед» и «Назад», которые включают вместо размыкающих контактов КМ1 и КМ2, например, при отсутствии размыкающих контактов в конструкции МП. Тогда при нажатии кнопки SB2 разрывается цепь питания катушки КМ2 и при нажатии на кнопку SB3 катушка КМ2 останется обесточенной. 


Высокий коэффициент возврата электромагнитов контакторов переменного тока позволяет защищать от понижения напряжения сети (электромагнит отпускает при U = (0,6-0,7)^ином). При восстановлении напряжения сети до номинального значения самопроизвольное включение МП не происходит, т.к. замыкающие блок-контакты КМ1 и КМ2 и замыкающие контакты кнопок «Вперед» и «Назад» - разомкнуты.


В схеме предусмотрено зануление - корпус электродвигателя соединен с нейтралью N. В случае пробоя изоляции электродвигателя или питающего кабеля на корпус, в схеме возникнет режим короткого замыкания (через цепь «фаза - корпус - нуль» будет протекать ток короткого замыкания), что приведет к срабатыванию электромагнитного расцепителя автоматического выключателя QF. Автоматический выключатель обесточит схему.

Магнитный пускатель наиболее часто используется для управления электродвигателями. Хотя есть у него и другие сферы применения: управление освещением, отоплением, коммутация мощных нагрузок. Их включение и отключение может выполняться как вручную, при помощи кнопок управления, так и с применением систем автоматики. О подключении кнопок управления к магнитному пускателю мы и поговорим.

Кнопки управления пускателей

В общем случае потребуется две кнопки: одна для включения и одна для отключения. Обратите внимание, что у них для управления пускателем используются разные по назначению контакты. У кнопки «Стоп» они нормально замкнуты, то есть, если кнопка не нажата, группа контактов замкнута, и размыкается при активации кнопки. У кнопки «Пуск» все наоборот.

Эти устройства могут содержать или только конкретный, нужный для работы элемент, либо быть универсальными, включая в себя и по одному замкнутому и разомкнутому контакту. В этом случае необходимо выбрать правильный.

Производители обычно снабжают свою продукцию символьными обозначениями, позволяющими определить назначение той или оной контактной группы. Стоповую кнопку обычно окрашивают в красный цвет. Цвет пусковой традиционно черный, то приветствуется зеленый, который соответствует сигналу «Включено» или «Включить». Такие кнопки используются, в основном, на дверях шкафов и панелях управления двигателями станков.

Для дистанционного управления используются кнопочные станции, содержащие две кнопки в одном корпусе. Станция соединяется с местом установки пускателя с помощью контрольного кабеля. В нем должно быть не менее трех жил, сечение которых может быть небольшим. Простейшая рабочая схема пускателя с тепловым реле

Магнитный пускатель

Теперь о том, на что следует обратить внимание, рассматривая сам пускатель перед его подключением. Самое важное – напряжение катушки управления, которое указано либо на ней самой, либо неподалеку. Если надпись гласит 220 В АС (или рядом с 220 стоит значок переменного тока), то для работы схемы управления потребуется фаза и ноль.

Интересное видео о работе магнитного пускателя смотрите ниже:

Если же это 380 В АС (того же переменного тока), то управлять пускателем будут две фазы. В процессе описания работы схемы управления будет понятно, в чем отличие.

При любых других значениях напряжения, наличии знака постоянного тока или букв DC подключить изделие к сети не получится. Оно предназначено для других цепей.

Еще нам потребуется использовать дополнительный контакт пускателя, называемый блок-контактом. У большинства аппаратов он маркируется цифрами 13НО (13NO, просто 13) и 14НО (14NO, 14).

Буквы НО означают «нормально открытый», то есть замыкается он только на притянутом пускателе, что при желании можно проверить мультиметром. Встречаются пускатели, имеющие нормально замкнутые дополнительные контакты, они не годятся для рассматриваемой схемы управления.

Силовые контакты предназначены для подключения нагрузки, которой они и управляют.

У разных производителей их маркировка отличается, но при их определении сложностей не возникает. Итак, крепим пускатель к поверхности или DIN-рейке в месте его постоянной дислокации, прокладываем силовые и контрольные кабели, начинаем подключение.

Схема управления пускателем на 220 В

Один мудрец сказал: есть 44 схемы подключения кнопок к магнитному пускателю, из которых 3 работают, а остальные – нет. Но правильная – только одна. Про нее и поговорим (смотри схему ниже).
Подключение силовых цепей лучше оставить на потом. Так будет проще доступ к винтам катушки, которые всегда перекрываются проводами основной цепи. Для питания цепей управления используем один из фазных контактов, от которой проводник отправляем на один из выводов кнопки «Стоп».

Это может быть или проводник, или жила кабеля.

От кнопки стоп пойдут уже два провода: один к кнопке «Пуск», второй – на блок-контакт пускателя.

Для этого между кнопками ставится перемычка, а к одной из них в месте ее подключения добавляется жила кабеля к пускателю. Со второго вывода кнопки «Пуск» тоже идут два провода: один на второй вывод блок-контакта, второй – к выводу «А1» катушки управления.

При подключении кнопок кабелем перемычка ставится уже на пускателе, к ней подключается третья жила. Второй вывод от катушки (А2) подключается к нулевой клемме. В принципе нет разницы, в каком порядке подключать вывода кнопок и блок-контакта. Желательно только именно вывод «А2» катушки управления соединить с нулевым проводником. Любой электрик ожидает, что нулевой потенциал будет только там.

Теперь можно подключить провода или кабели силовой цепи, не позабыв о том, что рядом с одним из них на входе присутствует провод на схему управления. И только с этой стороны на пускатель подается питание (традиционно – сверху). Попытка подключить кнопки на выход пускателя ни к чему не приведет.

Схема управления пускателем на 380 В

Все то же самое, но для того, чтобы катушка заработала, проводник от вывода «А2» надо подключить не к нулевой шинке, а к любой другой фазе, не использующейся до этого. Вся схема будет работать от двух фаз.

Подключение теплового реле в схему пускателя

Тепловое реле используется для защиты от перегрузки. Конечно, автоматическим выключателем он защищается при этом все равно, но его теплового элемента для этой цели недостаточно. И его нельзя настроить точно на номинальный ток мотора. Принцип работы теплового реле тот же, что и в автоматическом выключателе.

Ток проходит по греющим элементам, если его величина превысит заданную – отгибается биметаллическая пластинка и переключает контактики.

В этом есть еще одно отличие от автоматического выключателя: само тепловое реле ничего не отключает. Оно просто дает сигнал к отключению. Который нужно правильно использовать.
Силовые контакты теплового реле позволяют подключать его к пускателю напрямую, без проводов. Для этого каждый модельный ряд изделий взаимно дополняет друг друга. Например, ИЭК выпускает тепловые реле для своих пускателей, АВВ – своих. И так у каждого производителя. Но изделия разных фирм не стыкуются друг с другом.

Тепловые реле также могут иметь два независимых контакта: нормально замкнуты и нормально разомкнутый. Нам понадобится замкнутый – как в случае с кнопкой «Стоп». Тем более, что и функционально он будет работать так же, как эта кнопка: разрывать цепь питания катушки пускателя, чтобы он отпал.

Теперь потребуется врезать найденные контакты в схему управления. Теоретически это можно сделать почти в любом месте, но традиционно он подключается после катушки.

В описанном выше случае для этого потребуется от вывода «А2» отправить провод на контакт теплового реле, а от второго его контакта – уже туда, где до этого был подключен проводник. В случае с управлением от 220 В это – нулевая шинка, с 380 В – фаза на пускателе. Срабатывание теплового реле у большинства моделей никак не заметно.

Для возврата его в исходное состояние на панели прибора есть небольшая кнопочка, которая перекидывает при нажатии. Но это нужно делать не сразу, а дать реле остыть, иначе контакты не зафиксируются. Перед включением в работу после монтажа кнопку лучше нажать, исключив возможное переключение контактной системы в ходе транспортировки из-за тряски и вибраций.

Ещё одно интересное видео о работе магнитного пускателя:

Проверка работоспособности схемы

Для того, чтобы понять, правильно собрана схема или нет, нагрузку к пускателю лучше не подключать, оставив его нижние силовые клеммы свободными. Так вы обезопасите коммутируемое оборудование от лишних проблем. Включаем автоматический выключатель, подающий напряжение на испытуемый объект.

Само собой разумеется, пока идет монтаж, он должен быть отключен. А также любым доступным способом предотвращено случайное его включение посторонними лицами. Если после подачи напряжения пускатель не включился самостоятельно – уже хорошо.

Нажимаем на кнопку «Пуск», пускатель должен включиться. Если нет – проверяем замкнутое положение контактов кнопки «Стоп» и состояние теплового реле.

При диагностике неисправности помогает однополюсный указатель напряжения, которым можно легко проверить прохождение фазы через кнопку «Стоп» до кнопки «Пуск». Если при отпускании кнопки «Пуск» пускатель не фиксируется, а отпадает – неправильно подключены блок-контакты.

Проверьте – они должны подключиться параллельно этой кнопке. Правильно подключенный пускатель должен фиксироваться во включенном положении при механическом нажатии на подвижную часть магнитопровода.

Теперь проверяем работу теплового реле. Включаем пускатель и аккуратно отсоединяем любой проводок от контактов реле. Пускатель должен отпасть.

Для нужд промышленных предприятий и компаний производится достаточно большое количество оборудования и приборов, обеспечивающих бесперебойную и соответствующую стандартам работу. Одним из таких приборов является магнитный пускатель.

Целевое назначение

Пускатель электромагнитный являет собой электромеханическое устройство, используемое для распределения питающего напряжения и управления работой подключенных нагрузок, работа которого регулируется по цепи низкого напряжения. Перечень задач, для чего нужен магнитный пускатель, выглядит как:

  • Запуск электрического двигателя с последующим разгоном до номинальной скорости;
  • Поддержание беспрерывной работы двигателя;
  • Прекращение подачи питающего напряжения на двигатель;
  • Защитное отключение нагрузки от сети при перегрузках или нестандартных ситуациях.

Поскольку магнитные пускатели представляют собой конструктивно несложные приборы и по параметрам способны коммутировать достаточно мощные нагрузки с огромными токами, то они также находят применение при управлении работой плавильных печей, блоков по вентиляции и кондиционированию воздуха, жидкостными электронасосами, пневмонагнетателями и другими подобными потребителями.

Конструкция и технические параметры

Устройство магнитного пускателя:

  • Сердечник;
  • Катушка электромагнита;
  • Якорь;
  • Полимерный каркас;
  • Механические датчики работы;
  • Центральная и дополнительная группа контакторов.

Основные параметры, отображенные в технической документации:

  • Мера тока, проходящего по центральным клеммам, – величина токов, при которых устройство является работоспособным на длительном отрезке времени с заданными параметрами;
  • Максимальное значение тока, которым сможет оперировать прибор;
  • Напряжение связываемого контура – напряжение оперируемого контура, при котором изоляция между центральными клеммами сохраняет свои технические параметры;
  • Управляющее напряжение катушки электрического магнита – переменное либо постоянное питающее напряжение электромагнита;
  • Релейная и электромеханическая устойчивость к изнашиванию – показатель выражается в количестве циклов на смыкание и размыкание клемм. Релейная износоустойчивость определяется по соответствующему графику, отображенному в сопутствующей документации к прибору. Подставив значения питающего напряжения и силы тока оперируемой сети, возможно, определить параметр самостоятельно;
  • Граничное количество срабатываний за единицу времени;
  • Число добавочных клемм и метод их реализации;
  • Отрезок времени на подключение и отключение.

Кроме того, пускатель электромагнитный может дополняться:

  1. Защитным реле с целью предотвращения перегрева и электрических перегрузок конечного потребителя;
  2. Дополнительным набором клемм;
  3. Пусковым устройством для двигателя;
  4. Электропредохранителями.

Разновидности магнитных пускателей

Из общего ассортимента выделяются такие виды магнитных пускателей:

  1. Реверсионные – обеспечивающие вращение ротора двигателя в направлении, обратном начальному;
  2. Нереверсионные – поддерживающие вращение ротора двигателя в одном направлении;
  3. Ограждающего типа – предназначены для установки в области с небольшим объемом пыли;
  4. Пылезащитные – применяются для уличного размещения и могут подвергаться воздействию солнечных лучей, дождя и снега;
  5. Открытого типа – используются в помещениях с отсутствием пыли и посторонних предметов.

Принцип работы магнитного пускателя

Принцип действия магнитного пускателя заключается в следующем. При подаче управляющего сигнала на обмотку катушки электромагнита (6) она намагничивается и вместе с неподвижной Ш-образной частью сердечника (7) притягивает к себе якорь (5) на пластмассовой траверсе (4), которого контактные мостики (2) плавно замыкают контактные пластины (3), благодаря контактным пружинам (1), которые, в свою очередь, создают необходимое усилие нажатия. Дополнительные контакты (8) могут использоваться на усмотрение потребителя.

Группа клемм исполнена в виде трехполюсного электрического магнита переменного тока с блок-контактами из серебросодержащего металла, осуществляет коммутирование основных цепей, амплитуда тока которых варьируется от 3 Ампер до 200 Ампер. Исходя из того, что основные клеммы длительное время проводят рабочий ток нагрузки и производят большое количество циклов на подключение и отключение, материалом для основных контактов применяют металлокерамику. Для упрощения использования стационарные и движущиеся клеммы принято монтировать легкосъемными.

В связи с использованием в замыкателях дугогасильных элементов появилась возможность уменьшить расстояние между рабочими клеммами и, соответственно, ослабить мощность электромагнита, ужать габариты, вес электромагнитного пускателя в целом. Дугогасильное устройство используется с целью исключения появления искрения клемм в момент смыкания и размыкания контактов. При рабочих токах более 10 Ампер дугогасильный прибор реализовывается в виде дугогасильного колосника на каждый проем. Дугогасильные колосники реализованы на принципе компенсации электрической дуги поперечным магнитным полем в камерах с продольными отверстиями. Негативными последствиями искрения является обгорание, обугливание, чрезмерное нагревание контактов.

Для перемещения якоря с контактами применяются прямонаправленные системы электромагнитов с П,- и Ш,- образными наборными магнитопроводами. Поскольку при срабатывании магнитного пускателя через втягивающую катушку проходит переменный ток, по своей величине значительно превышающий ток втянутого состояния, то для таких пускателей производителем устанавливается граничное количество подключений-отключений в час.

В зависимости от пропускных токов магнитного пускателя, применяются контакты различной формы и с разной плоскостью соприкосновения контактов, как указано на картинке ниже.

Для управляющих цепей магнитного пускателя применяются точечные контакты (а), а именно:

  • Точка-плоскость (1);
  • Точка-сфера (2);
  • Сфера-плоскость (3);
  • Сфера-сфера (4);

Для силовых цепей электромагнитного пускателя используют продольные контакты (б), а именно:

  • Призма-плоскость (5);
  • Цилиндр-плоскость (6);
  • Цилиндр-цилиндр (7);
  • Плоскость-плоскость (8).

Дополнительный контактор мостикового типа используется для коммутации слаботочных цепей управления и приводится в действие той же втягивающей катушкой, что и основные контакты. Основу вспомогательных контактов составляет медь, покрытая тонким слоем серебра или биметалла. Выпускаемые магнитные пускатели в своем составе имеют от двух до четырех дополнительных контактов, которые также могут работать, как на замыкание, так и на размыкание.

В работе асинхронных двигателей неотъемлемой частью является наличие магнитного пускателя, основной задачей которого является защита устройства от перегрузок. При работе двигателя бывают случаи обрыва одной из фаз ввиду перегорания плавких предохранителей либо по другим причинам. Понятно, что такое явление приводит к резкому возрастанию тока на статорных обмотках, что приводит к перегреву и выходу из строя электрического двигателя. Для предотвращения таких поломок используются магнитные пускатели с тепловыми реле. Основная масса тепловых реле построена на основе биметаллических элементов. Принцип функционирования биметаллического элемента заложен в его конструкции, сущностью которой является жесткое скрепление, путем горячего проката или сваркой, двух металлических пластин с разными коэффициентами расширения. Поскольку при нагревании такого элемента металлическая пластина с одной стороны будет линейно расширяться быстрее, чем пластина с обратной стороны, то произойдет физический изгиб пластины. Соответственно, происходит преобразование тепловой энергии в механическую работу путем отключения нагрузки при перегреве.

Обратите внимание! Поскольку тепловой процесс является инерционным, то тепловые реле не могут быть средством защиты оборудования от токов короткого замыкания. Даже короткого времени для отключения нагрузки при коротком замыкании может быть достаточно, чтобы нагрузка перегорела или вышла из строя.

В качестве металлов с разными коэффициентами линейного расширения, используемыми в биметаллических элементах, используются хромоникелевая сталь и инвар.

Типы магнитных пускателей

К типовым магнитным пускателям относятся:

  1. Класс ПМЛ эксплуатируется с электрическими двигателями мощностью до 75кВт. Основной механизм может дополняться температурным реле и ограничителями перенапряжений;
  2. Серия ПМА применяется в паре с электрическими асинхронными двигателями, ротор которых короткозамкнут, и имеет мощность до 100 кВт с рабочим напряжением от 380В до 660В. Механизм дополняется температурным реле, ограничителем по напряжению и позитронной защитой;
  3. Функционирование асинхронных двигателей мощностью до 11кВт, с питающим напряжением до 660В, дополняют магнитные пускатели серии ПМЕ. Данная серия комплектуется клеммами класса АС-3, АС-4 и тепловыми реле;
  4. Аппаратура кораблей комплектуется электромагнитными пускателями класса ПММ. Для сфер деятельности с более жесткими условиями к безопасности созданы магнитные пускатели в водозащитном или каплезащитном корпусе;
  5. Назначение магнитного пускателя группы ПМ-12 заключается в подсоединении к сети, реверсировании и выключении асинхронных двигателей, имеющих короткозамкнутый ротор, мощностью до 125кВт и при питающем напряжении сети от 380В до 660В.

Понимая устройство и принцип функционирования магнитного пускателя, не составит особого труда подобрать конкретный прибор для выполнения определенной задачи. Эксплуатируя устройство, не стоит забывать об обслуживании и регулярном осмотре магнитного пускателя, при этом прибор прослужит долгое время с заданными характеристиками.

Видео

Прежде чем приступить к практическому подключению пускателя — напомним полезную теорию: контактор магнитного пускателя включается управляющим импульсом, исходящим от нажатия пусковой кнопки, с помощью которой подается напряжение на катушку управления. Удержание контактора во включенном состоянии происходит по принципу самоподхвата - когда дополнительный контакт подключается параллельно пусковой кнопке, тем самым подавая напряжение на катушку, вследствие чего пропадает необходимость удерживать кнопку запуска в нажатом состоянии.

Отключение магнитного пускателя в этом случае возможно только при разрыве цепи управляющей катушки, из чего становится очевидной необходимость использования кнопки с размыкающим контактом. Поэтому кнопки управления пускателем, которые называют кнопочным постом, имеют по две пары контактов - нормально открытые (разомкнутые, замыкающие, НО, NO) и нормально закрытые (замкнутые, размыкающие, НЗ, NC)

Данная универсализация всех кнопок кнопочного поста сделана для того, чтобы предвидеть возможные схемы обеспечения моментального реверса двигателя. Общепринято называть отключающую кнопку словом: «Стоп » и маркировать её красным цветом. Включающую кнопку часто называют пусковой, стартовой, или обозначают словом «Пуск », «Вперёд », «Назад ».

Если катушка рассчитана на срабатывание от 220 В, то цепь управления коммутирует нейтраль. Если рабочее напряжение электромагнитной катушки 380 В, то в цепи управления протекает ток, «снятый» с другой питающей клеммы пускателя.

Схема подключения магнитного пускателя на 220 В

Здесь ток на магнитную катушку КМ 1 подается через тепловое реле и клеммы, соединенных в цепь кнопок SB2 для включения — «пуск» и SB1 для остановки — «стоп». Когда мы нажимаем «пуск» электрический ток поступает на катушку. Одновременно сердечник пускателя притягивает якорь, в результате чего происходит замыкание подвижных силовых контактов, после чего напряжение поступает на нагрузку. При отпускании «пуск» не происходит размыкание цепи, поскольку параллельно этой кнопке выполнено подключение блок-контакта КМ1 с замкнутыми магнитными контактами. Благодаря этому на катушку поступает фазное напряжение L3. При нажатии «стоп» питание отключается, подвижные контакты приходят в исходное положение, что приводит к обесточиванию нагрузки. Те же процессы происходят при работе теплового реле Р - обеспечивается разрыв ноля N, питающего катушку.

Схема подключения магнитного пускателя на 380 В

Подключение к 380 В практически не отличается от первого варианта, различие лишь в питающем напряжении магнитной катушки. В данном случае питание осуществляется с использованием двух фаз L2 и L3, тогда как в первом случае — L3 и ноль.

На схеме видно, что катушка пускателя (5) питается от фаз L1 и L2 при напряжении 380 В. Фаза L1 присоединяется напрямую к ней, а фаза L2 - через кнопку 2 «стоп», кнопку 6 «пуск» и кнопку 4 теплового реле, соединенные последовательно между собой. Принцип действия такой схемы следующий: После нажатия кнопки 6 «пуск» через включенную кнопку 4 теплового реле напряжение фазы L2 попадает на катушку магнитного пускателя 5. Происходит втягивание сердечника, замыкающее контактную группу 7 на определенную нагрузку (электродвигатель М), при этом подается ток, напряжением 380 В. В случае выключения «пуск» цепь не прерывается, ток проходит через контакт 3 - подвижный блок, замыкающийся при втягивании сердечника.

При аварии в обязательном порядке должно сработать теплового реле 1, его контакт 4 разрывается, отключается катушка и возвратные пружины приводят сердечник в исходное положение. Контактная группа размыкается, снимая напряжение с аварийного участка.

Подключение магнитного пускателя через кнопочный пост

В данную схему включены дополнительные кнопки включения и остановки. Обе кнопки «Стоп» подключены в цепь управления последовательно, а кнопки «Пуск» соединяются параллельно.Такое подключение позволяет производить коммутацию кнопками с любого поста.

Вот ещё вариант. Схема состоит из двухкнопочного поста “Пуск” и “Стоп” с двумя парами контактов нормально замкнутых и разомкнутых. Магнитный пускатель с катушкой управления на 220 В. Питание кнопок взято с клеммы силовых контактов пускателя, цифра 1. Напряжение подходит до кнопки “Стоп” цифра 2. Проходит через нормально замкнутый контакт, по перемычке до кнопки “Пуск” цифра 3.

Нажимаем кнопку “Пуск”, замыкается нормально разомкнутый контакт цифра 4. Напряжение достигает цели, цифра 5, катушка срабатывает, сердечник втягивается под воздействием электромагнита и приводит в движение силовые и вспомогательные контакты, выделенные пунктиром.

Вспомогательный блок контакт 6 шунтирует контакт кнопки “пуск” 4, для того, чтобы при отпускании кнопки “Пуск” пускатель не отключился. Отключение пускателя осуществляется нажатием кнопки “Стоп”, цифра 7, снимается напряжение с катушки управления и под воздействием возвратных пружин пускатель отключается.

Подключение двигателя через пускатели

Нереверсивный магнитный пускатель

Если изменять направление вращения двигателя не требуется, то в цепи управления используются две не фиксируемые подпружиненные кнопки: одна в нормальном положении разомкнутая - «Пуск», другая замкнутая - «Стоп». Как правило, они изготавливаются в едином диэлектрическом корпусе, при этом одна из них красного цвета. Такие кнопки обычно имеют две пары групп контактов - одну нормально разомкнутую, другую замкнутую. Их тип определяется во время монтажных работ визуально или с помощью измерительного прибора.

Провод цепи управления подключается к первой клемме замкнутых контактов кнопки «Стоп». Ко второй клемме этой кнопки подключают два провода: один идет на любой ближайший из разомкнутых контактов кнопки «Пуск», второй - подключается к управляющему контакту на магнитном пускателе, который при отключенной катушке разомкнут. Этот разомкнутый контакт соединяется коротким проводом с управляемой клеммой катушки.

Второй провод с кнопки «Пуск» подключается непосредственно на клемму втягивающей катушки. Таким образом, к управляемой клемме «втягивающей» должно быть подключено два провода - «прямой» и «блокирующий».

Одновременно замыкается управляющий контакт и, благодаря замкнутой кнопке «Стоп», управляющее воздействие на втягивающую катушку фиксируется. При отпускании кнопки «Пуск» магнитный пускатель остается замкнутым. Размыкание контактов кнопки «Стоп» вызывает отключение электромагнитной катушки от фазы или нейтрали и электродвигатель отключается.

Реверсивный магнитный пускатель

Для реверсирования двигателя необходимо два магнитных пускателя и три управляющие кнопки. Магнитные пускатели устанавливаются рядом друг с другом. Для большей наглядности условно отметим их питающие клеммы цифрами 1-3-5, а те, к которым подключен двигатель как 2-4-6.

Для реверсивной схемы управления пускатели соединяются так: клеммы 1, 3 и 5 с соответствующими номерами соседнего пускателя. А «выходные» контакты перекрестно: 2 с 6, 4 с 4, 6 с 2. Провод, питающий электродвигатель, подключается к трем клеммам 2, 4, 6 любого пускателя.

При перекрестной схеме подключения одновременное срабатывание обоих пускателей приведет к короткому замыканию. Поэтому проводник «блокирующей» цепи каждого пускателя должен проходить сначала через замкнутый управляющий контакт соседнего, а потом - через разомкнутый своего. Тогда включение второго пускателя будет вызывать отключение первого и наоборот.

Ко второй клемме замкнутой кнопки «Стоп» подключаются не два, а три провода: два «блокирующих» и один питающий кнопки «Пуск», включаемых параллельно друг другу. При такой схеме подключения кнопка «Стоп» выключает любой из скоммутированных пускателей и останавливает электродвигатель.

  • Перед сборкой схемы надо освободить рабочий участок от тока и проконтролировать, чтобы напряжение отсутствовало тестером.
  • Установить обозначение напряжения сердечника, которое упоминается на нем, а не на пускателе. Оно может быть 220 или 380 вольт. Если оно 220 В, на катушку идет фаза и ноль. Напряжение с обозначением 380 - значит разные фазы. Это является важным аспектом, ведь при неверном подсоединении сердечник может сгореть или не будет запускать полностью нужные контакторы.
  • Кнопка на пускатель (красная)Нужно взять одну красную кнопку «Стоп» с замкнутыми контактами и одну черную либо зеленую кнопку с надписью «Пуск» с неизменно разомкнутыми контактами.
  • Учтите, что силовые контакторы заставляют работать или останавливают только фазы, а нули, которые приходят и отходят, проводники с заземлением всегда объединяются на клеммнике в обход пускателя. Для подсоединения сердечника в 220 Вольт на дополнение с клеммника берется 0 в конструкцию организации пускателя.