Полимер - что это такое? Производство полимеров. История полимеров Какой полимер имеет натуральное происхождение

- 108.00 Кб

Из истории полимеров

Первые упоминания о синтетических полимерах относятся к 1838 (поливинилиденхлорид) и 1839 (полистирол) годам. Ряд полимеров, возможно, был получен еще в первой половине 19 века. Но в те времена химики пытались подавить полимеризацию и поликонденсацию, которые вели к "осмолению" продуктов основной химической реакции, т. е. к образованию полимеров (полимеры и сейчас часто называют "смолами").

В 1833 И. Берцелиусом для обозначения особого вида изомерии впервые был применен термин "полимерия". В этой изомерии вещества (полимеры), имеющие одинаковый состав, обладали различной молекулярной массой, например этилен и бутилен, кислород и озон. Однако тот термин имел несколько другой смысл, чем современные представления о полимерах. "Истинные" синтетические полимеры к тому времени еще не были известны.

А. М. Бутлеров изучал связь между строением и относительной устойчивостью молекул, проявляющейся в реакциях полимеризации. После создания А. М. Бутлеровым теории химического строения возникла химия полимеров. Наука о полимерах получила свое развитие, главным образом, благодаря интенсивным поискам способов синтеза каучука. В этих исследованиях принимали участие учёные многих стран, такие как Г. Бушарда, У. Тилден, немецкий учёный К. Гарриес, И. Л. Кондаков, С. В. Лебедев и другие. Большую роль в развитии представлений о поликонденсации сыграли работы У. Карозерса.

В 30-х годах было доказано существование свободнорадикального и ионного механизмов полимеризации.

С начала 20-х годов 20 века Г. Штаудингер стал автором принципиально нового представления о полимерах как о веществах, состоящих из макромолекул, частиц необычайно большой молекулярной массы. До этого предполагалось, что такие биополимеры, как целлюлоза, крахмал, каучук, белки, а также некоторые синтетические полимеры, сходные с ними по свойствам (например, полиизопрен), состоят из малых молекул, обладающих необычной способностью ассоциировать в растворе в комплексы коллоидной природы благодаря нековалентным связям (теория "малых блоков"). Однако открытие Г. Штаудингера заставило рассматривать полимеры как качественно новый объект исследования химии и физики.

Полимеры - это химические соединения с высокой молекулярной массой (от нескольких тысяч до многих миллионов), молекулы которых (макромолекулы) состоят из большого числа повторяющихся группировок (мономерных звеньев). Атомы, входящие в состав макромолекул, соединены друг с другом силами главных и (или) координационных валентностей.

Классификация полимеров

Полимеры можно классифицировать по происхождению. Они делятся на природные (биополимеры) и синтетические. К биополимерам можно отнести белки, нуклеиновые кислоты, природные смолы, а к синтетическим полимерам - полиэтилен, полипропилен, феноло-формальдегидные смолы.

Полимеры классифицируются еще и по расположению атомов в макромолекуле. Атомы или атомные группы могут располагаться в макромолекуле в виде:

  • открытой цепи или вытянутой в линию последовательности циклов (линейные полимеры, например каучук натуральный);
  • цепи с разветвлением (разветвленные полимеры, например, амилопектин), трехмерной сетки (сшитые полимеры, например, отверждённые эпоксидные смолы).

Полимеры, молекулы которых состоят из одинаковых мономерных звеньев, называются гомополимерами (к ним относят поливинилхлорид, поликапроамид, целлюлозу).

Полимеры, макромолекулы которых содержат несколько типов мономерных звеньев, называются сополимерами. Сополимеры, в которых звенья каждого типа образуют достаточно длинные непрерывные последовательности, сменяющие друг друга в пределах макромолекулы, называются блок-сополимерами. К внутренним (неконцевым) звеньям макромолекулы одного химического строения могут быть присоединены одна или несколько цепей другого строения. Такие сополимеры называются привитыми.

Макромолекулы одного и того же химического состава могут быть построены из звеньев различной пространственной конфигурации. Если макромолекулы состоят из одинаковых стереоизомеров или из различных стереоизомеров, чередующихся в цепи в определенной периодичности, полимеры называются стереорегулярными.

По составу основной (главной) цепи полимеры подразделяют на: гетероцепные, в основной цепи которых содержатся атомы различных элементов, чаще всего углерода, азота, кремния, фосфора, и гомоцепные, основные цепи которых построены из одинаковых атомов.

Полимеры, в которых каждый или некоторые стереоизомеры звена образуют достаточно длинные непрерывные последовательности, сменяющие друг друга в пределах одной макромолекулы, называются стереоблок-сополимерами.

Из гомоцепных полимеров наиболее распространены карбоцепные полимеры, главные цепи которых состоят только из атомов углерода, например, полиэтилен, полиметилметакрилат, политетрафторэтилен.

Примеры гетероцепных полимеров - полиэфиры (полиэтилентерефталат, поликарбонаты), полиамиды, мочевиноформальдегидные смолы, белки, некоторые кремнийорганические полимеры. Полимеры, макромолекулы которых наряду с углеводородными группами содержат атомы неорганогенных элементов, называются элементоорганическими.

Отдельную группу полимеров образуют неорганические полимеры, например, пластическая сера, полифосфонитрилхлорид.

Свойства и основные характеристики полимеров

Полимеры могут существовать в кристаллическом и аморфном состояниях. Необходимое условие кристаллизации - регулярность достаточно длинных участков макромолекулы. В кристаллических полимерах возможно возникновение разнообразных надмолекулярных структур: фибрилл, сферолитов, монокристаллов, тип которых во многом определяет свойства полимерного материала. Надмолекулярные структуры в незакристаллизованных (аморфных) полимерах менее выражены, чем в кристаллических.

Целлюлоза - полимер с очень жесткими цепями, соединенными межмолекулярными водородными связями, вообще не может существовать в высокоэластичном состоянии до температуры ее разложения. Большие различия в свойствах полимеров могут наблюдаться даже в том случае, если различия в строении макромолекул на первый взгляд и невелики. Так, стереорегулярный полистирол - кристаллическое вещество с температурой плавления около 235 °С, а нестереорегулярный вообще не способен кристаллизоваться, и размягчается при температуре около 80 °С.

Незакристаллизованные полимеры могут находиться в трех физических состояниях: стеклообразном, высокоэластичном и вязко-текучем. Полимеры с низкой (ниже комнатной) температурой перехода из стеклообразного в высокоэластичное состояние называются эластомерами, с высокой - пластиками. В зависимости от химического состава, строения и взаимного расположения макромолекул свойства полимеров могут меняться в очень широких пределах. Так, 1,4.-цисполибутадиен, построенный из гибких углеводородных цепей, при температуре около 20 °С - эластичный материал, который при температуре -60 °С переходит в стеклообразное состояние; полиметилметакрилат, построенный из более жестких цепей, при температуре около 20 °С - твердый стеклообразный продукт, переходящий в высокоэластичное состояние лишь при 100 °С.

Линейные полимеры обладают специфическим комплексом физико-химических и механических свойств. Важнейшие из этих свойств:

  • способность образовывать высокопрочные анизотропные высокоориентированные волокна и пленки, способность к большим, длительно развивающимся обратимым деформациям;
  • способность в высокоэластичном состоянии набухать перед растворением;
  • высокая вязкость растворов.

Этот комплекс свойств обусловлен высокой молекулярной массой, цепным строением, а также гибкостью макромолекул. При переходе от линейных цепей к разветвленным, редким трехмерным сеткам и, наконец, к густым сетчатым структурам этот комплекс свойств становится всё менее выраженным. Сильно сшитые полимеры нерастворимы, неплавки и неспособны к высокоэластичным деформациям.

Полимеры могут вступать в следующие основные типы реакций:

  • образование химических связей между макромолекулами (так называемое сшивание), например, при вулканизации каучуков, дублении кожи;
  • распад макромолекул на отдельные, более короткие фрагменты, реакции боковых функциональных групп полимеров с низкомолекулярными веществами, не затрагивающие основную цепь (так называемые полимер-аналогичные превращения);
  • внутримолекулярные реакции, протекающие между функциональными группами одной макромолекулы, например, внутримолекулярная циклизация. Сшивание часто протекает одновременно с деструкцией.

Примером полимер-аналогичных превращений может служить омыление поливтилацетата, приводящее к образованию поливинилового спирта. Скорость реакций полимеров с низкомолекулярными веществами часто лимитируется скоростью диффузии последних в фазу полимера. Наиболее явно это проявляется в случае сшитых полимеров. Скорость взаимодействия макромолекул с низкомолекулярными веществами часто существенно зависит от природы и расположения соседних звеньев относительно реагирующего звена. Это же относится и к внутримолекулярным реакциям между функциональными группами, принадлежащими одной цепи.

Некоторые свойства полимеров, например, растворимость, способность к вязкому течению, стабильность очень чувствительны к действию небольших количеств примесей или добавок, реагирующих с макромолекулами. Так, чтобы превратить линейный полимер из растворимого в полностью нерастворимый, достаточно образовать на одну макромолекулу 1 – 2 поперечные связи.

Важнейшие характеристики полимеров - химический состав, молекулярная масса и молекулярно-массовое распределение, степень разветвленности и гибкости макромолекул, стереорегулярность и другие.

Получение полимеров

Природные полимеры образуются в процессе биосинтеза в клетках живых организмов. С помощью экстракции, фракционного осаждения и других методов они могут быть выделены из растительного и животного сырья. Синтетические полимеры получают полимеризацией и поликонденсацией. Карбоцепные полимеры обычно синтезируют полимеризацией мономеров с одной или несколькими кратными углеродными связями или мономеров, содержащих неустойчивые карбоциклические группировки (например, из циклопропана и его производных). Гетероцепные полимеры получают поликонденсацией, а также полимеризацией мономеров, содержащих кратные связи углеродоэлемента (например, С = О, С = N, N = С = О) или непрочные гетероциклические группировки.

Полимеры в сельском хозяйстве

Сегодня можно говорить, по меньшей мере, о четырех основных направлениях использования полимерных материалов в сельском хозяйстве. И в отечественной, и в мировой практике первое место принадлежит пленкам. Благодаря применению мульчирующей перфорированной пленки на полях урожайность некоторых культур повышается до 30%, а сроки созревания ускоряются на 10 – 14 дней. Использование полиэтиленовой пленки для гидроизоляции создаваемых водохранилищ обеспечивает существенное снижение потерь запасаемой влаги. Укрытие пленкой сенажа, силоса, грубых кормов обеспечивает их лучшую сохранность даже в неблагоприятных погодных условиях. Но главная область использования пленочных полимерных материалов в сельском хозяйстве - строительство и эксплуатация пленочных теплиц. В настоящее время стало технически возможным выпускать полотнища пленки шириной до 16 м, а это позволяет строить пленочные теплицы шириной в основании до 7,5 и длиной до 200 м. В таких теплицах можно все сельскохозяйственные работы проводить механизировано; более того, эти теплицы позволяют выращивать продукцию круглогодично. В холодное время теплицы обогреваются опять-таки с помощью полимерных труб, заложенных в почву на глубину 60 – 70 см.

С точки зрения химической структуры полимеров, используемых в тепличных хозяйствах такого рода, можно отметить преимущественное использование полиэтилена, непластифицированного поливинилхлорида и, в меньшей мере, полиамидов. Полиэтиленовые пленки отличаются лучшей светопроницаемостью, лучшими прочностными свойствами, но худшей погодоустойчивостью и сравнительно высокими теплопотерями. Они могут исправно служить лишь 1 – 2 сезона. Полиамидные и другие пленки пока применяются сравнительно редко.

Описание работы

Первые упоминания о синтетических полимерах относятся к 1838 (поливинилиденхлорид) и 1839 (полистирол) годам. Ряд полимеров, возможно, был получен еще в первой половине 19 века. Но в те времена химики пытались подавить полимеризацию и поликонденсацию, которые вели к "осмолению" продуктов основной химической реакции, т. е. к образованию полимеров (полимеры и сейчас часто называют "смолами").

Большая часть современных строительных материалов, лекарственных средств, тканей, предметов быта, упаковочных и расходных веществ является полимерами. Это целая группа соединений, имеющих характерные отличительные признаки. Их очень много, но несмотря на это, число полимеров продолжает расти. Ведь химики-синтетики ежегодно открывают все новые и новые вещества. При этом особенное значение во все времена имел именно природный полимер. Что же собой представляют эти удивительные молекулы? Каковы их свойства и в чем заключаются особенности? Ответим на эти вопросы в ходе статьи.

Полимеры: общая характеристика

С точки зрения химии, полимером принято считать молекулу, имеющую огромную молекулярную массу: от нескольких тысяч до миллионов единиц. Однако, помимо этого признака, существует и еще несколько, по которым вещества можно классифицировать именно как природные и синтетические полимеры. Это:

  • постоянно повторяющиеся мономерные звенья, которые соединяются при помощи разных взаимодействий;
  • степень полимеразии (то есть число мономеров) должна быть очень высокой, иначе соединение будет считаться олигомером;
  • определенная пространственная ориентация макромолекулы;
  • набор важных физико-химических свойств, характерных только для данной группы.

В целом вещество полимерной природы отличить от других достаточно легко. Стоит лишь взглянуть на его формулу, чтобы понять это. Типичным примером может служить всем известный полиэтилен, широко применяемый в быту и промышленности. Он является продуктом в которую вступает этен или этилен. Реакция в общем виде записывается следующим образом:

nCH 2 =CH 2 →(-СН-СН-) n , где n - это степень полимеризации молекул, показывающая, сколько мономерных звеньев входит в ее состав.

Также в качестве примера можно привести природный полимер, который всем хорошо известен, это крахмал. Кроме того, к данной группе соединений принадлежат амилопектин, целлюлоза, куриный белок и многие другие вещества.

Реакции, в результате которых могут образоваться макромолекулы, бывают двух типов:

  • полимеризации;
  • поликонденсации.

Разница в том, что во втором случае продукты взаимодействия являются низкомолекулярными. Строение полимера может быть различным, это зависит от тех атомов, что его образуют. Часто встречаются линейные формы, но есть и трехмерные сетчатые, очень сложные.

Если же говорить о силах и взаимодействиях, которые удерживают мономерные звенья вместе, то можно обозначить несколько основных:

  • Ван-Дер-Ваальсовы силы;
  • химические связи (ковалентные, ионные);
  • электроностатическое взаимодействие.

Все полимеры нельзя объединять в одну категорию, так как они имеют совершенно различную природу, способ образования и выполняют неодинаковые функции. Свойства их также разнятся. Поэтому существует классификация, которая позволяет делить всех представителей этой группы веществ на разные категории. В ее основе может лежать несколько признаков.

Классификация полимеров

Если брать за основу качественный состав молекул, то все рассматриваемые вещества можно определить в три группы.

  1. Органические - это те, в состав которых входят атомы углерода, водорода, серы, кислорода, фосфора, азота. То есть те элементы, которые являются биогенными. Примеров можно привести массу: полиэтилен, поливинилхлорид, полипропилен, вискоза, нейлон, природный полимер - белок, нуклеиновые кислоты и так далее.
  2. Элементорганические - такие, в состав которых входит какой-то посторонний неорганический и не Чаще всего это кремний, алюминий или титан. Примеры подобных макромолекул: стеклополимеры, композиционные материалы.
  3. Неорганические - в основе цепи лежат атомы кремния, а не углерода. Радикалы же могут быть частью боковых ответвлений. Они открыты совсем недавно, в середине XX века. Используются в медицине, строительстве, технике и прочих отраслях. Примеры: силикон, киноварь.

Если разделять полимеры по происхождению, то можно выделить три их группы.

  1. Природные полимеры, применение которых широко осуществлялось с самой древности. Это такие макромолекулы, для создания которых человек не прилагал никаких усилий. Они являются продуктами реакций самой природы. Примеры: шелк, шерсть, белок, нуклеиновые кислоты, крахмал, целлюлоза, кожа, хлопок и прочие.
  2. Искусственные. Это такие макромолекулы, которые создаются человеком, но на основе природных аналогов. То есть просто улучшаются и изменяются свойства уже имеющегося природного полимера. Примеры: искусственный
  3. Синтетические - это такие полимеры, в создании которых участвует только человек. Природных аналогов для них нет. Ученые разрабатывают методы синтеза новых материалов, которые отличались бы улучшенными техническими характеристиками. Так рождаются синтетические полимерные соединения разного рода. Примеры: полиэтилен, полипропилен, вискоза, и прочее.

Есть и еще один признак, который лежит в основе разделения рассматриваемых веществ на группы. Это реакционная способность и термоустойчивость. Выделяют две категории по этому параметру:

  • термопластичные;
  • термореактивные.

Самым древним, важным и особенно ценным является все же природный полимер. Его свойства уникальны. Поэтому дальше рассмотрим именно эту категорию макромолекул.

Какое вещество является природным полимером?

Чтобы ответить на этот вопрос, сначала оглянемся вокруг себя. Что нас окружает? Живые организмы вокруг нас, которые питаются, дышат, размножаются, цветут и дают плоды и семена. А что они представляют собой с молекулярной точки зрения? Это такие соединения, как:

  • белки;
  • нуклеиновые кислоты;
  • полисахариды.

Так вот, природным полимером является каждое из приведенных соединений. Таким образом, выходит, что жизнь вокруг нас существует только благодаря наличию этих молекул. С самых древних времен люди использовали глину, строительные смеси и растворы для укрепления и создания жилища, ткали пряжу из шерсти, применяли для создания одежды хлопок, шелк, шерсть и кожу животных. Природные органические полимеры сопровождали человека на всех ступенях его становления и развития и во многом помогли ему добиться тех результатов, что мы имеем сегодня.

Сама природа давала все для того, чтобы жизнь людей была максимально комфортной. Со временем был открыт каучук, выяснены его замечательные свойства. Человек научился использовать в пищевых целях крахмал, в технических - целлюлозу. Природным полимером является и камфора, которая также известна с древних времен. Смолы, белки, нуклеиновые кислоты - все это примеры рассматриваемых соединений.

Строение природных полимеров

Не все представители данного класса веществ устроены одинаково. Так, природные и синтетические полимеры могут существенно различаться. Их молекулы ориентируется так, чтобы максимально выгодно и удобно существовать с энергетической точки зрения. При этом многие природные виды способны набухать и структура их в процессе меняется. Можно выделить несколько самых распространенных вариантов строения цепи:

  • линейные;
  • разветвленные;
  • звездчатые;
  • плоские;
  • сетчатые;
  • ленточные;
  • гребневидные.

Искусственные и синтетические представители макромолекул имеют очень большую массу, огромное число атомов. Их создают со специально заданными свойствами. Поэтому и строение их изначально планируется человеком. Натуральные же полимеры чаще всего либо линейные, либо сетчатые по своей структуре.

Примеры природных макромолекул

Природные и искусственные полимеры очень близки друг другу. Ведь первые становятся основой для создания вторых. Примеров подобных превращений много. Приведем некоторые из них.

  1. Обычная пластмасса молочно-белого цвета - это продукт, получаемый при обработке азотной кислотой целлюлозы с добавлением природной камфоры. Реакция полимеризации приводит к затвердеванию полученного полимера и превращению в нужный продукт. А пластификатор - камфора, делает его способным размягчаться при нагревании и менять свою форму.
  2. Ацетатный шелк, медно-аммиачное волокно, вискоза - все это примеры тех нитей, волокон, которые получают на основе целлюлозы. Ткани из и льна не так прочны, не блестящи, легко сминаемы. А вот искусственные аналоги их этих недостатков лишены, что и делает их использование весьма привлекательным.
  3. Искусственные камни, строительные материалы, смеси, кожзаменители - это также примеры полимеров, полученных на основе натурального сырья.

Вещество, являющееся природным полимером, может использоваться и в истинном виде. Таких примеров тоже немало:

  • канифоль;
  • янтарь;
  • крахмал;
  • амилопектин;
  • целлюлоза;
  • шерсть;
  • хлопок;
  • шелк;
  • цемент;
  • глина;
  • известь;
  • белки;
  • нуклеиновые кислоты и так далее.

Очевидно, что рассматриваемый нами класс соединений очень многочисленный, практически важный и значимый для людей. Теперь рассмотрим более подробно несколько представителей природных полимеров, которые являются очень востребованными в настоящее время.

Шелк и шерсть

Формула природного полимера шелка сложна, ведь его химический состав выражается следующими компонентами:

  • фиброин;
  • серицин;
  • воски;
  • жиры.

Сам главный белок - фиброин, насчитывает в своем составе несколько разновидностей аминокислот. Если представить его полипептидную цепочку, то она будет выглядеть примерно так: (-NH-CH 2 -CO-NH-CH(CH 3)-CO-NH-CH 2 -CO-) n. И это лишь ее часть. Если представить, что к данной структуре при помощи сил Ван-Дер-Ваальса присоединяется не менее сложная молекула белка серицина, вместе они смешиваются в единую конформацию с воском и жирами, то понятно, почему сложно изобразить формулу натурального шелка.

На сегодняшний день большую часть данного продукта поставляет Китай, ведь на его просторах существует естественная среда обитания основного производителя - тутового шелкопряда. Раньше, начиная с самых древних времен, натуральный шелк очень ценился. Позволить себе одежду из него могли лишь знатные, богатые люди. Сегодня многие характеристики этой ткани оставляют желать лучшего. Например, он сильно намагничивается и мнется, кроме того, от пребывания на солнце теряет блеск и тускнеет. Поэтому больше в обиходе искусственные производные на его основе.

Шерсть - это тоже природный полимер, так как является продуктом жизнедеятельности кожи и сальных желез животных. На основе этого белкового продукта изготавливают трикотаж, который, как и шелк, является ценным материалом.

Крахмал

Природный полимер крахмал является продуктом жизнедеятельности растений. Они производят его в результате процесса фотосинтеза и накапливают в разных частях тела. Его химический состав:

  • амилопектин;
  • амилоза;
  • альфа-глюкоза.

Пространственная структура крахмала очень разветвленная, неупорядоченная. Благодаря входящему в состав амилопектину, он способен набухать в воде, превращаясь в так называемый клейстер. Этот используется в технике и промышленности. Медицина, пищевая отрасль, изготовление обойных клеев - это также области использования данного вещества.

Среди растений, содержащих максимальное количество крахмала, можно выделить:

  • кукурузу;
  • картофель;
  • пшеницу;
  • маниок;
  • овес;
  • гречиху;
  • бананы;
  • сорго.

На основе этого биополимера выпекают хлеб, изготавливают макаронные изделия, варят кисели, каши и прочие пищевые продукты.

Целлюлоза

С точки зрения химии, данное вещество - это полимер, состав которого выражается формулой (С 6 Н 5 О 5) n . Мономерным звеном цепи является бета-глюкоза. Основные места содержания целлюлозы - это клеточные стенки растений. Именно поэтому древесина - ценный источник этого соединения.

Целлюлоза - природный полимер, который имеет линейное пространственное строение. Она используется для производства следующих видов изделий:

  • целлюлозно-бумажной продукции;
  • искусственного меха;
  • разных видов искусственных волокон;
  • хлопка;
  • пластмассы;
  • бездымного пороха;
  • кинопленок и так далее.

Очевидно, что промышленное значение ее велико. Чтобы данное соединение возможно было использовать в производстве, его следует для начала извлечь из растений. Это делают путем длительной варки древесины в специальных устройствах. Дальнейшая обработка, а также реагенты, используемые для вываривания, различаются. Есть несколько способов:

  • сульфитный;
  • азотнокислый;
  • натронный;
  • сульфатный.

После подобной обработки продукт все еще содержит примеси. В основе это лигнин и гемицеллюлоза. Чтобы избавиться от них, массу обрабатывают хлором или щелочью.

В организме человека не существует таких биологических катализаторов, которые сумели бы расщепить этот сложный биополимер. Однако некоторые животные (травоядные) приспособились к этому. В их желудке поселяются определенные бактерии, которые делают это за них. Взамен микроорганизмы получают энергию для жизни и среду обитания. Такая форма симбиоза является крайне выгодной для обеих сторон.

Каучук

Это природный полимер, имеющий ценное хозяйственное значение. Впервые он был описан еще Робертом Куком, который в одном из своих путешествий его обнаружил. Произошло это так. Высадившись на острове, на котором жили неизвестные ему туземцы, он был гостеприимно встречен ими. Его внимание привлекли местные дети, которые играли необычным предметом. Это шарообразное тело отталкивалось от пола и подпрыгивало высоко вверх, затем возвращалось.

Поинтересовавшись у местного населения о том, из чего сделана эта игрушка, Кук узнал, что так застывает сок одного из деревьев - гевеи. Много позже было выяснено, что это и есть биополимер каучук.

Химическая природа данного соединения известна - это изопрен, подвергшийся естественной полимеризации. Формула каучука (С 5 Н 8) n . Его свойства, благодаря которым он так высоко ценится, следующие:

  • эластичность;
  • износостойкость;
  • электроизоляция;
  • водонепроницаемость.

Однако есть и недостатки. На холоде он становится хрупким и ломким, а на жаре - липким и тягучим. Именно поэтому появилась необходимость синтеза аналогов искусственной или синтетической основы. Сегодня каучуки широко используются в технических и промышленных целях. Самые главные продукты на их основе:

  • резины;
  • эбониты.

Янтарь

Является природным полимером, поскольку по своей структуре представляет смолу, ископаемую ее форму. Пространственная структура - каркасный аморфный полимер. Очень горюч, зажечь его можно пламенем спички. Обладает свойствами люминесценции. Это очень важное и ценное качество, которое используется в ювелирном деле. Украшения на основе янтаря очень красивы и востребованы.

Кроме того, этот биополимер используют и в медицинских целях. Из него же изготовляют наждачную бумагу, лаковые покрытия для различных поверхностей.

ВВЕДЕНИЕ
ИСТОРИЯ РАЗВИТИЯ ПРОМЫШЛЕННОСТИ ПЕРЕРАБОТКИ
ПОЛИМЕРОВ
Переработка полимеров появилась в середине 19 века
Модифицированная целлюлоза - целлулоид – для замены
слоновьих бивней для бильярдных шаров.
Устройства, названные экструдерами, появились в 19 веке в
Англии, Америке и Германии. Применялись для изоляции
проводов и кабелей каучуком и резиной.
3

Отрасль химической промышленности: «Синтетические смолы их переработка».

1. СОВРЕМЕННОЕ СОСТОЯНИЕ ПРОМЫШЛЕННОСТИ
ПЕРЕРАБОТКИ ПОЛИМЕРОВ И КОМПОЗИТОВ
Отрасль химической промышленности:
«Синтетические смолы их переработка».
Сырье
Переработка:
Генерирует максимальное
количество мест
Работает как драйвер
развития машиностроения
Увеличивает наукоемкость
промышленности страны
Полимер
Переработка
4

5

Предпосылки развития переработки полимеров

Годовые
темпы
развития
промышленного
производства
России
8,2%
4,7%
3,3%
0,3%
3,2%
5%
Годовые
темпы
развития
переработки
пластмасс
21,5%
13,1%
7,4%
7,3%
7-7,5%
9-10%
реалистический
2010 г.
2011 г.
2012 г.
2013 г.
оптимистический
2030 г.
6

7

2. КЛАССИФИКАЦИЯ ПОЛИМЕРНЫХ МАТЕРИАЛОВ
И КОМПОЗИТОВ
1. Классификация по модулю упругости в условиях
эксплуатации
При комнатной температуре модуль упругости при
растяжении полимеров в высокоэластическом состоянии очень
мал
E~ 0,1 - 10 МПа
Для стеклообразных полимеров – пластиков - Е 103 МПа
Для частично-кристаллических полимеров - пластиков
Е (αкрист) 10 – 103 МПа
2. Классификация по Т стеклования аморфных полимеров
Тст < Т = 23оС < Тст
эластомер
пластик
8

Полимеры, которые в условиях эксплуатации
находятся в стеклообразном или кристаллическом
состояниях и проявляют упругость, используются в
качестве конструкционных материалов и являются
основой пластиков и волокон.
Полимеры, которые в условиях эксплуатации
находятся в высокоэластическом физическом состоянии
и проявляют большие и обратимые деформации,
используются в качестве эластомеров.
9

10.

10

11.

3. Классификация по химической структуре
11

12.

4. Классификация по технологическому признаку:
Термопласты – ПМ, способные к неоднократному
переходу при нагревании в текучее состояние и
затвердеванию при охлаждении без существенного
изменения структуры и свойств.
Реактопласты – ПМ, которые при нагревании вначале
переходят в текучее состояние, а затем отверждаются
в результате химических превращений и неспособны к
повторному переходу в текучее состояние.
4. КЛАССИФИКАЦИЯ по технологическим свойствам (условная)
характер):
литьевые (для тонкостенных изделий, длинномерных
изделий),
экструзионные (пленочные, трубные, листовые),
пресс-материалы.
12

13.

5. Классификация по областям применения – выделение групп
ПМ, сходных по основному эксплуатационному признаку.
Конструкционные материалы – для работы при кратковременном или
длительном действии статических нагрузок: Е > 900 МПа
(ПА, ПК, ПБТ, ПФО, полиимиды, этролы, армированные ПП, ПА, фенопласты,
аминопласты, кремнийорганические композиции).
Ударопрочные материалы – работа в условиях ударных нагрузок: ударная
прочность > 20 кДж/ м2
(ПЭ, СКЭП, СЭВА, ПП, ПВХ, ПТФЭ, УПС, ПК, АБС, армированные пластики).
Теплостойкие материалы – Т эксплуатации > 150оС
(ПА, ПБТФ, ПЭТФ, ПФО, ПК, аминопласты, фенопласты, полиимиды, резины на основе
фторкаучуков, кремнийорганические композиции)
Морозостойкие материалы – Т эксплуатации < минус 40оС
(ПЭ, СКЭП, СЭВА, ПТФЭ, ПА, ПК, резины на основе НК, изопрена и др).
ПМ электро- и радиотехнического назначения – ρv > 1010 Ом*м, tg δ < 0,02
(ПО, ПВХ, ПТФЭ, ПФС, ПФО, полиимиды, СФД, ненасыщенные ПЭ).
13

14.

Светотехнические ПМ – к-т светопропускания > 80%
(блочный ПС, сополимеры САН, полиакрилаты, ПММА, прозрачные марки ПВХ, ПК,
пленки ПЭТФ и ПА, ЭС, ненасыщенные ПЭ)
Огнестойкие и самозатухающие ПМ – КИ > 22% или затухающие при выносе
из пламени
(ПТФЭ, полиимиды, ПВХ и композиции с антипиренами)
Радиационностойкие ПМ – длительная устойчивость к ионизирующим
излучениям
(ПТФЭ, полимиды, фторкаучуки, композиции на основе ЭС и КС).
Химически стойкие ПМ – для работы в агессивных средах
(ПО, ПВХ, ПТФЭ, ПБТ, ПЭТФ, полиимиды, композиции на основе КС).
Кроме того, группы водо-, бензо-, маслостойких, атмосферостойких,
тропикостойких, грибостойких ПМ.
14

15.

6.Классификация ПМ по совокупности параметров эксплуатации
15

16.

7. Классификация ПМ по объему производства
Крупнотоннажные пластмассы: ПО, ПВХ, ПС и его сополимеры, ПУ,
композиции на основе ФФС, ненасыщенных ПЭС, аминоальдегидных смол
– 80% от общего объема производства пластмасс.
Крупнотоннажные каучуки – каучуки общего назначения: изопреновые,
бутадиеновые, бутадиенстирольные.
Среднетоннажные пластмассы: ПА, этролы, ПЭТФ, ПК, ПФО, ЭС,
фурановые смолы.
Среднетоннажные каучуки – хлоропреновые, акрилатные,
этиленпропиленовые.
Малотоннажные пластмассы и каучуки – несколько % от объема
производства.
16

17.

8. Классификация по составу и типу макроструктуры
полимерного материала:
Полимерный материал (ПМ) = полимер + ∑ добавок
Гомогенная макроструктура: все добавки (стабилизаторы,
пластификаторы, красители) растворены в полимере.
Гетерогенная макроструктура - композиционные материалы:
добавки нерастворимы в полимере - наличие включений
(наполнители, пигменты, полимерные добавки) размером
более 100 нм.
Гетерогенная структура ПМ может быть:
17

18.

18

19.

Типы армированных структур
19

20.

3. СОЗДАНИЕ ПОЛИМЕРНЫХ МАТЕРИАЛОВ
ПОЛИМЕРНЫЙ
МАТЕРИАЛ
ПОЛИМЕР
ПОЛИМЕРНЫЙ
МАТЕРИАЛ
=
ПОЛИМЕР + Σ ДОБАВОК
ДОБАВКИ:
1 ЗАМЕДЛЯЮЩИЕ СТАРЕНИЕ ПОЛИМЕРНЫХ МАТЕРИАЛОВ
2 УЛУЧШАЮЩИЕ ПЕРЕРАБАТЫВАЕМОСТЬ
3 СНИЖАЮЩИЕ ГОРЮЧЕСТЬ
4 ПОВЫШАЮЩИЕ ПРОЧНОСТНЫЕ СВОЙСТВА
5 ПРИДАЮЩИЕ СПЕЦИАЛЬНЫЕ СВОЙСТВА
20

21.

1 ДОБАВКИ ЗАМЕДЛЯЮЩИЕ СТАРЕНИЕ ПМ
Старение полимеров - это сложный комплекс химических и
физических процессов, происходящих под влиянием окружающей
среды, при переработке ПМ, эксплуатации и хранении,
приводящий к необратимым или обратимым изменениям
(ухудшению) свойств полимеров (вместо термина "старение"
употребляют термин "деструкция" (иногда "деградация").
Процессы физического старения обратимы. Нет разрыва или
сшивания полимерных цепей. Это процессы кристаллизации,
перекристаллизации или диффузии в полимер растворителей,
вызывающие межкристаллитную коррозию и приводят к
ухудшению механических свойств полимерных изделий.
21

22.

Процессы химического старения необратимы. Они
приводят к разрыву химических связей, а иногда к сшивке
макромолекул, изменению химической структуры, понижению
или увеличению молекулярной массы полимера.
Процессы химического старения:
Термическая деструкция (термораспад макромолекул по
цепному механизму).
Окислительная деструкция (образование пероксидных
радикалов, инициирующих распад цепей).
Как правило ТД и ОД идут одновременно - это
термоокислительная деструкция.
Озонное старение (озон реагирует с двойной связью,
возникает промежуточный комплекс, а затем образуется
циклическое кислородсодержащее соединение, разлагающееся
на пероксидные радикалы)
22

23.

Фотодеструкция
Фотохимические превращения происходят в
полимерах под действием УФ (180 < λ< 400нм) и
видимого света (400< λ < 800нм), если полимер
содержит химические связи или хромофорные
группы.
Фотодеструции в этой области подвержены
полимеры содержащие
О, N, двойные связи,
ароматические ядра, примеси соединений металлов
(например, остатки катализатора), случайно попавшие
ароматические соединения и т. д.
23

24.

Радиационная деструкция. Ионизирующее излучение ведет
к образованию электрона и положительно заряженной полимерной
частицы, которая распадается на радикалы.
Гидролитическая деструкция. Механизм процесса
гидролитический, скорость деструкции определяется скоростью
диффузии гидролитирующей среды (вода, растворы кислот,
оснований, солей).
Механодеструкция. Образование радикалов под действием
механических сил с последующим превращением на воздухе в
гидропероксиды.
Биодеструкция. Взаимодействие с бактериями, грибами с
протеканием гидролитического ферментативного разложения
полимера.
24

25.

25

26.

26

27.

СТАБИЛИЗАТОРЫ (термо-, светостабилизаторы, антиоксиданты,
антирады, антиозонаты, фунгициды).
Термостабилизаторы (или ингибиторы) :
а) обрывают цепи по реакции с пероксидными радикалами
(фенолы, ароматические амины, аминофенолы, гидроксиламины,
ароматические многоядерные углеводороды).
б)обрывают цепи по реакции с алкильными (R*) радикалами
(хиноны, нитроксильные радикалы, молекулы йода).
в)разрушают гидропероксиды, особенно в реакциях
автоокисления (сульфиды, дисульфиды, эфиры фосфористой
кислоты).
27

28.

Светостабилизаторы:
а) вещества отражающие кванты света - (технический
углерод (сажа)),
б) поглощающие кванты света (2-гидроксибензофенон),
в) тушители возбужденных состояний (2-(2`-гидроксифенил)-бензтиазол).
Антиоксиданты – вещества взаимодействующие с
пероксидами и гидроксидами (первичные антиоксиданты –
затрудненные фенолы, вторичные – фосфиты, тиоэфиры).
Антирадиационные добавки (антирады) придают устойчивость к гамма-радиации и др. видам
излучений при стерилизации.
Антимикробные добавки, абиотические добавки,
биоциды. Повышают устойчивость к действию бактерий
(бактериациды), грибков и плесени (фунгициды), обрастанию в воде
(альгициды)
28

29.

29

30.

30

31.

Требования к антиоксидантам:
эффективная защита полимера в процессе
переработки в изделия; от внешних воздействий
при эксплуатации;
потери стабилизатора при перработке должны
быть минимальны;
достаточно высокая ММ (свыше 700 г/моль);
способность к диффузии в расплаве полимера;
совместимость, растворимость в твердом
полимере;
низкая летучесть и стойкость к миграции в
окружающую среду;
специальные стабилизаторы для изделий
медицинского назначения, игрушек, упаковки
31
пищевых продуктов

Министерство образования и науки Российской Федерации

федеральное государственное автономное образовательное учреждение

высшего профессионального образования

«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ

ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Институт природных ресурсов

Направление подготовки (специальность) Химическая технология

Кафедра химической технологии топлива и химической кибернетики

Реферат

Название реферата:

Природные полимеры, полимеры вокруг нас “

по дисциплине «Введение в инженерную деятельность»

Выполнили студенты гр. 2Д42 Никонова Ньургуйаана

Прокопчук Кристина

Даянова Регина

Реферат принят:

Мойзес О. Е.

(Подпись)

2014г.

(дата проверки отчета)

Томск 2014 г.

1.Введение ……………………………………………………………………………………………..2

2.Понятие полимера и классификация ………………………………………………….3

3.Целлюлоза ……………………………………………………………………………………………3

4.Крахмал…………………………………………………………………………………………………5

5.Глютин…………………………………………………………………………………………………..6

6.Казеин……………………………………………………………………………………………………6

7.Каучук…………………………………………………………………………………………………….7

8.Резина……………………………………………………………………………………………………7

9.Синтетические полимеры…………………………………………………………………...9

10.Свойства и важнейшие характеристики ……………………………………………10

11. Химические реакции………………………………………………………………………….11

12.Получение……………………………………………………………………………………………12

13.Полимеры в сельком хозяйстве…………………………………………………………..12

14.Полимеры в промышленности…………………………………………………………….14

Введение

Термин “полимерия” был введен в науку И.Берцелиусом в 1833 для обозначения особого вида изомерии, при которой вещества (полимеры), имеющие одинаковый состав, обладают различной молекулярной массой, например этилен и бутилен, кислород и озон. Такое содержание термина не соответствовало современным представлениям о полимерах. “Истинные” синтетические полимеры к тому времени еще не были известны.

Ряд полимеров был, по-видимому, получен еще в первой половине 19 века. Однако химики тогда обычно пытались подавить полимеризацию и поликонденсацию, которые вели к “осмолению” продуктов основной химической реакции, т.е., собственно, к образованию полимеров (до сих пор полимеры часто называют “смолами”). Первые упоминания о синтетических полимерах относятся к 1838 (поливинилиденхлорид) и 1839 (полистирол),

Химия полимеров возникла только в связи с созданием А.М.Бутлеровым теории химического строения. А.М.Бутлеров изучал связь между строением и относительной устойчивостью молекул, проявляющейся в реакциях полимеризации. Дальнейшее свое развитие наука о полимерах получила главным образом благодаря интенсивным поискам способов синтеза каучука, в которых участвовали крупнейшие учёные многих стран (Г.Бушарда, У.Тилден, немецкий учёный К Гарриес, И.Л.Кондаков, С.В.Лебедев и другие). В 30-х годов было доказано существование свободнорадикального и ионного механизмов полимеризации. Большую роль в развитии представлений о поликонденсации сыграли работы У.Карозерса.

С начала 20-х годов 20 века развиваются также теоретические представления о строении полимеров Вначале предполагалось, что такие биополимеры, как целлюлоза, крахмал, каучук, белки, а также некоторые синтетические полимеры, сходные с ними по свойствам (например, полиизопрен), состоят из малых молекул, обладающих необычной способностью ассоциировать в растворе в комплексы коллоидной природы благодаря нековалентным связям (теория “малых блоков”). Автором принципиально нового представления о полимерах как о веществах, состоящих из макромолекул, частиц необычайно большой молекулярной массы, был Г.Штаудингер. Победа идей этого учёного заставила рассматривать полимеры как качественно новый объект исследования химии и физики.

Понятие полимера и классификация

Полимеры - химические соединения с высокой молекулярной массой (от нескольких тысяч до многих миллионов), молекулы которых (макромолекулы) состоят из большого числа повторяющихся группировок (мономерных звеньев). Атомы, входящие в состав макромолекул, соединены друг с другом силами главных и (или) координационных валентностей.

Классификация.

По происхождению полимеры делятся на:

    природные (биополимеры), например белки, нуклеиновые кислоты, смолы природные

    синтетические, например полиэтилен, полипропилен, феноло-формальдегидные смолы.

К природным полимерам, применяемым в полиграфии, относятся: полисахариды (целлюлоза крахмал, камеди), 6елки, глютин, казеин, альбумин), полидиены (каучук).

Целлюлоза

Целлюлоза, или клетчатка (от латинского слова «целлула» - клетка), широко распространена в природе. Целлюлоза - это прочное волокнистое вещество органического происхождения, из которого состоит опорная ткань всех растений (растительных клеток).

Физические свойства целлюлозы

Целлюлозные волокна отличаются белизной, гибкостью, прочностью, упруго-эластичностью, т.е. способностью обратимо деформироваться без разрушения даже при больших механических напряжениях, нерастворимостью в воде и органических растворителях, неплавкостью.

Целлюлоза выдерживает нагрев до 150° без разрушения; при более высокой температуре наблюдается деполимеризация целлюлозы и связанная с этим потеря прочности, а при 270° и выше начинается термическое разложение с выделением продуктов распада: уксусной кислоты, метилового спирта, кетонов, в остатке - деготь и уголь.

Строение целлюлозного волокна.

Каждое растительное волокно, например хлопковое, льняное, древесное и др. это одна клетка, оболочка которой состоит в основном из целлюлозы. Внутри волокна имеется канал - капилляр, доступный для проникновения воздуха и влаги. Технические волокна целлюлозы имеют длину в среднем 2,5-3 мм (ель, сосна, береза, тополь) и 20-25 мм (лен, хлопок, пенька) при диаметре 25 мкм.

Целлюлозного растительного волокна имеет фибриллярное строение. Фибриллы - это нитевидные, элементарные рол окна - пачки молекул целлюлозы, прочно соединенных между собой водородными связями, длиной 50-мкм и диаметром 0,1-0,4 мкм. Вероятнее всего, что целлюлоза образует упорядоченную систему нитей - фибрилл, расположенных более плотно вокруг внутреннего канала (капилляра) волокна и более свободно в наружных его слоях. В промежутках между фибриллами находятся мицеллюлозы и лигнин, причем содержание их увеличивается от внутренних слоев клеточной стоики к наружным. Межклеточные пространства целлю­лозы заполнены преимущественно лигнином.

Главный источник получения целлюлозы - древесина... Древесиной называется внутренняя часть деревьев, лежащая под корой и составляющая основную растительную ткань, из которой образуется ствол дерева.

Живая клетка растущего дерева имеет оболочку (стенки) из целлюлозы, внутреннюю полость, заполненную протоплазмой, и ядро. Живая клетка способна долиться и образовывать из года в год в растущем дереве новые образования древесины в слое камбия, под корой.

Живые клетки с течением времени подвергаются одеревенению, приводящему в конечном счете к их полному омертвлению, или одревеснению. Одревеснение клетки происходит главным образом в результате появления в ней лигнина. Древесина на 90-95% состоит, из таких отмерших клеток - волокон, лишенных протоплазмы и ядра, но способных к делению, с внутренней полостью, заполненной воздухом и водой.

Химические строение и свойства целлюлозы. Целлюлоза - это природный полимер полисахарид, принадлежащий к классу углеводов. Гигантская молекула (макромолекула) целлюлозы построена из многократно повторяющихся структурных звеньев - остатков β-глюкозы (О6Н10О5)п. Число п, или коэффициент полимеризации, показывает, сколько раз структурное звено-остаток β -глюкозы - повторяется в макромолекуле целлюлозы, а следовательно, характеризует длину молекулярной цепи (длину молекулы) и предопределяет ее молекулярный вес.

Коэффициент полимеризаций у целлюлозы различного происхождения различен. Так, у древесной целлюлозы он равен 3000, у хлопковой - 12 000, у льняной 36 000 (приблизительно). Этим и объясняется большой прочность хлопкового и льняного волокон по сравнении с волокнами древесной целлюлозы.

Щелочная целлюлоза получается действием на целлюлозу раствора едкого натра. При этом атомы водорода спиртовых гидроксилов частично или полностью заменяются атомами натрия. Щелочная целлюлоза, не теряя своего волокнистого строения, отличается повышенной химической активностью, что и используется при получении простых эфиров целлюлозы, например карбоксиметилцеллюлозы.

Карбоксиметилцеллюлоза (КМЦ) - это простой эфир целлюлозы и гликолевой кислоты. Промышленный способ изготовления карбоксиметилцеллюлозы основан на взаимодействии щелочной целлюлозы с монохлоруксусной кислотой.

Гемицеллюлозы - это нечто среднее между целлюлозой и крахмалом. Они также являются полисахаридами. Молекулы гемицеллюлоз построены из остатков моносахаридов: маннозы (гексозы) и ксилозы (пентозы). Гемицеллюлозы не имеют волокнистого строения. Они служат резервным питательным веществом для растений и предохраняют их от инфекций. Гемицеллюлозы набухают в воде и сравнительно легко гидролизуются даже очень разбавленными кислотами, растворяются в 18,5%-ной щелочи. Гемицеллюлозы не являются вредными примесями цел­люлозы, идущей для изготовления бумаги. Наоборот, древесная целлюлоза с большим содержанием гемицеллюлоз легко поддается размолу, а приготовленная из неё бумага имеет повышенную прочность (особенно поверхности), так как гемицеллюлозы являются очень хорошей естественной проклейкой.

Лигнин - вещество химически неустойчивое: под влиянием света, влаги, кислорода, воздуха и тепла лигнин разрушается, вследствие чего растительные волокна теряют прочность и темнеют. Лигнин, в отличие от целлюлозы, растворяется в разбавленных кислотах и щелочах. На этом свойстве лигнина основаны способы производства целлюлозы из древесины, соломы, тростника и других растительных тканей. Строение лигнина очень сложно и еще недостаточно изучено; известно, что лигнин - природный полимер, структурным звеном которого является остаток очень реакционно-способного ароматического спирта - β -оксикониферилового.

С трудом можно представить себе сегодняшнюю жизнь без полимеров – сложных синтетических веществ, которые получили широкое распространение в различных областях человеческой деятельности. Полимеры – это высокомолекулярные соединения природного либо синтетического происхождения, состоящие из мономеров, соединенных химическими связями. Мономером является повторяющееся звено цепи, которое содержит исходную молекулу.

Органические высокомолекулярные соединения

Благодаря своим уникальным свойствам высокомолекулярные соединения успешно заменяют в различных сферах жизнедеятельности такие натуральные материалы, как дерево, металл, камень, завоевывая новые области применения. Для систематизации такой обширной группы веществ принята классификация полимеров по различным признакам. К ним относится состав, способ получения, пространственная конфигурация и так далее.

Классификация полимеров по химическому составу подразделяет их на три группы:

  • Органические высокомолекулярные вещества.
  • Элементоорганические соединения.
  • Неорганические высокомолекулярные соединения.

Самую большую группу представляют органические ВМС – смолы, каучуки, растительные масла, то есть продукты животного, а также растительного происхождения. Макромолекулы этих веществ в главной цепи наряду с атомами углерода имеют атомы кислорода, азота и других элементов.

Их свойства:

  • обладают способностями к обратной деформации, то есть эластичностью при невысоких нагрузках;
  • при небольшой концентрации могут образовывать вязкие растворы;
  • меняют физические и механические характеристики под действием минимального количества реагента;
  • при механическом воздействии возможно направленное ориентирование их макромолекул.

Элементоорганические соединения

Элементоорганические ВМС, в состав макромолекул которых входят, кроме атомов неорганических элементов – кремния, титана, алюминия - и органические углеводородные радикалы, созданы искусственным путем, и в природе их нет. Классификация полимеров делит их, в свою очередь, на три группы.

  • Первая группа – это вещества, в которых главная цепь составлена из атомов некоторых элементов, окруженных органическими радикалами.
  • Во вторую группу входят вещества с основной цепью, содержащей чередующиеся атомы углерода и таких элементов, как сера, азот и другие.
  • Третья группа включает вещества с органическими главными цепями, окруженными различными элементоорганическими группами.

Примером могут служить кремнийорганические соединения, в частности силикон, обладающий высокой износоустойчивостью.

Неорганические высокомолекулярные соединения в главной цепочке содержат оксиды кремния и металлов – магния, алюминия или кальция. У них нет боковых органических атомных групп. Связи в главных цепочках ковалентные и ионно-ковалентные, что обусловливает их высокую прочность и термостойкость. К ним относятся асбест, керамика, силикатные стекла, кварц.

Карбоцепные и гетероцепные ВМС

Классификация полимеров по химическому составу основной полимерной цепи предполагает деление этих веществ на две большие группы.

  • Карбоцепные, у которых основная цепочка макромолекулы ВМС состоит лишь из атомов углерода.
  • Гетероцепные, в которых в главной цепочке находятся вместе с атомами углерода другие атомы, придающие данному веществу дополнительные свойства.

Каждая из этих больших групп состоит из следующих подгрупп, отличающихся строением цепочки, количеством заместителей, их составом, числом боковых ветвей:

  • соединения с насыщенными связями в цепях, примером которых могут служить полиэтилен или полипропилен;
  • полимеры с ненасыщенными связями в главной цепи, например полибутадиен;
  • галогензамещенные высокомолекулярные соединения – тефлон;
  • полимерные спирты, примером чего является поливиниловый спирт;
  • ВМС, полученные на основе производных спиртов, пример - поливинилацетат;
  • соединения, полученные на основе альдегидов и кетонов, такие как полиакролеин;

  • полимеры, полученные на основе карбоновых кислот, представителем которых является полиакриловая кислота;
  • вещества, полученные из нитрилов (ПАН);
  • высокомолекулярные вещества, полученные из ароматических углеводородов, например полистирол.

Деление по природе гетероатома

Классификация полимеров может зависеть и от природы гетероатомов, она включает несколько групп:

  • с атомами кислорода в главной цепи – простые и сложные полиэфиры и перекиси;
  • соединения с содержанием в основной цепочке атомов азота – полиамины и полиамиды;
  • вещества с атомами кислорода и также азота в главной цепи, примером которых стали полиуретаны;
  • ВМС с атомами серы в основной цепочке – политиоэфиры и политетрасульфиды;
  • соединения, у которых присутствуют в главной цепи атомы фосфора.

Природные полимеры

В настоящее время принята также классификация полимеров по происхождению, по химической природе, которая делит их следующим образом:

  • Природные, их называют еще биополимерами.
  • Искусственные вещества, являющиеся высокомолекулярными.
  • Синтетические соединения.

Природные ВМС составляют основу жизни на Земле. Важнейшими из них являются белки – «кирпичики» живых организмов, мономерами которых выступают аминокислоты. Белки участвуют во всех биохимических реакциях организма, без них невозможна работа иммунной системы, процессы свертывания крови, образование костной и мышечной ткани, работа по преобразованию энергии и многое другое. Без нуклеиновых кислот невозможны хранение и передача наследственной информации.

Полисахариды – это высокомолекулярные углеводороды, которые вместе с белками участвуют в обмене веществ. Классификация полимеров по происхождению позволяет выделить природные высокомолекулярные вещества в особую группу.

Искусственные и синтетические полимеры

Искусственные полимеры получают из природных различными способами химической модификации для придания им необходимых свойств. Примером может служить целлюлоза, из которой получают многие пластмассы. Классификация полимеров по происхождению характеризует их как искусственные вещества. Синтетические ВМС получают химическим путем с помощью реакций полимеризации или поликонденсации. Их свойства, а следовательно и область применения, зависят от длины макромолекулы, то есть от молекулярного веса. Чем он больше, тем прочнее полученный материал. Очень удобна классификация полимеров по происхождению. Примеры подтверждают это.

Линейные макромолекулы

Любая классификация полимеров достаточно условна, и каждая имеет свои недостатки, так как не может отобразить все характеристики данной группы веществ. Тем не менее она помогает каким-то образом их систематизировать. Классификация полимеров по форме макромолекул представляет их в виде следующих трех групп:

  • линейные;
  • разветвленные;
  • пространственные, которые еще называются сетчатыми.

Длинные, изогнутые или спиралеобразные цепочки линейных ВМС придают веществам некоторые уникальные свойства:

  • за счет появления межмолекулярных связей образуют прочные волокна;
  • они способны к большим и длительным, но в то же время обратимым деформациям;
  • важным свойством является их гибкость;
  • при растворении эти вещества образуют растворы с высокой вязкостью.

Разветвленные макромолекулы

Разветвленные полимеры тоже имеют линейное строение, но со множеством боковых ветвей, более коротких, чем основная. При этом изменяются и их свойства:

  • растворимость у веществ с разветвленной структурой выше, чем у линейных, соответственно, они образуют растворы меньшей вязкости;
  • при увеличении длины боковых цепей становятся слабее межмолекулярные силы, что ведет к увеличению мягкости и эластичности материала;
  • чем выше степень разветвленности, тем больше физические свойства такого вещества приближаются к свойствам обычных низкомолекулярных соединений.

Трехмерные макромолекулы

Сетчатые высокомолекулярные соединения бывают плоскими (лестничного и паркетного типа) и трехмерными. К плоским можно отнести натуральный каучук и графит. В пространственных полимерах имеются поперечные связи-«мостики» между цепями, образующие одну большую трехмерную макромолекулу, обладающую необычайной твердостью.

Примером может служить алмаз или кератин. Сетчатые высокомолекулярные соединения являются основой резин, некоторых видов пластмасс, а также клеев и лаков.

Термопласты и реактопласты

Классификация полимеров по происхождению и по отношению к нагреванию призвана охарактеризовать поведение этих веществ при изменении температуры. В зависимости от процессов, происходящих при нагревании, получаются разные результаты. Если межмолекулярное взаимодействие ослабевает и увеличивается кинетическая энергия молекул, то вещество размягчается, переходя в вязкое состояние. При снижении температуры оно возвращается в обычное состояние – его химическая природа остается неизменной. Такие вещества называют термопластическими полимерами, например полиэтилен.

Другая группа соединений получила название термореактивных. Механизм происходящих в них при нагревании процессов совершенно другой. При наличии двойных связей или функциональных групп они взаимодействуют между собой, меняя химическую природу вещества. Оно не может восстановить свою первоначальную форму при охлаждении. Примером могут служить различные смолы.

Способ полимеризации

Еще одна классификация полимеров – по способу получения. Существуют такие способы получения ВМС:

  • Полимеризация, которая может проходить с использованием ионного механизма реакции и свободнорадикального.
  • Поликонденсация.

Полимеризацией называется процесс образования макромолекул путем последовательного соединения мономерных звеньев. Ими обычно являются низкомолекулярные вещества с кратными связями и циклическими группами. Во время реакции следует разрыв двойной связи или связи в циклической группе, и происходит образование новых между этими мономерами. Если в реакции участвуют мономеры одного вида, она называется гомополимеризацией. При использовании разных видов мономеров происходит реакция сополимеризации.

Реакция полимеризации – это цепная реакция, которая может протекать самопроизвольно, однако для ее ускорения применяются активные вещества. При свободнорадикальном механизме процесс протекает в несколько стадий:

  • Инициирование. На данной стадии путем светового, теплового, химического или какого-либо другого воздействия образуются в системе активные группы – радикалы.
  • Рост длины цепи. Эта стадия характеризуется присоединением следующих мономеров к радикалам с образованием новых радикалов.
  • Обрыв цепи получается при взаимодействии активных групп с образованием неактивных макромолекул.

Невозможно контролировать момент обрыва цепи, и поэтому образующиеся макромолекулы отличаются разной молекулярной массой.

Принцип действия ионного механизма реакции полимеризации такой же, как и свободнорадикального. Но здесь в качестве активных центров выступают катионы и анионы, поэтому различают катионную и анионную полимеризацию. В промышленности радикальной полимеризацией получают важнейшие полимеры: полиэтилен, полистирол и многие другие. Ионная полимеризация применяется при производстве синтетических каучуков.

Поликонденсация

Процесс образования высокомолекулярного соединения с отделением в качестве побочного продукта каких-то низкомолекулярных веществ – поликонденсация, которая отличается от полимеризации еще тем, что элементный состав образующейся макромолекулы не соответствует составу начальных веществ, участвующих в реакции. В них могут участвовать только соединения с функциональными группами, которые, взаимодействуя, отщепляют молекулу простого вещества и образуют новую связь. При поликонденсации бифункциональных соединений образуются линейные полимеры. Когда в реакции участвуют полифункциональные соединения, образуются ВМС с разветвленной или даже пространственной структурой. Образующиеся в процессе реакции низкомолекулярные вещества тоже взаимодействуют с промежуточными продуктами, вызывая обрыв цепи. Поэтому их лучше удалять из зоны реакции.

Определенные полимеры нельзя получить известными способами полимеризации или поликонденсации, так как нет требуемых исходных мономеров, способных участвовать в них. В этом случае синтез полимера ведется с участием высокомолекулярных соединений, содержащих функциональные группы, которые способны реагировать друг с другом.

С каждым днем усложняется классификация полимеров, так как появляется все больше новых видов этих удивительных веществ с заранее заданными свойствами, и человек уже не мыслит своей жизни без них. Однако возникает другая проблема, не менее важная – возможность их легкой и дешевой утилизации. Решение этой проблемы очень важно для существования планеты.