Температурный интервал стеклования. Температурный интервал вынужденной эластичности различных полимеров Температурный интервал горячей обработки давлением

24.07.2023 Дизайн

ГОСТ 33454-2015

Группа Т58

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

МЕТОДЫ ИСПЫТАНИЙ ХИМИЧЕСКОЙ ПРОДУКЦИИ, ПРЕДСТАВЛЯЮЩЕЙ ОПАСНОСТЬ ДЛЯ ОКРУЖАЮЩЕЙ СРЕДЫ

Определение температуры плавления/температурного интервала плавления

Testing of chemicals of environmental hazard. Determination of the melting point/melting range

МКС 13.020.01

Дата введения 2016-09-01

Предисловие

Цели, основные принципы и основной порядок проведения работ по межгосударственной стандартизации установлены ГОСТ 1.0-92 "Межгосударственная система стандартизации. Основные положения" и ГОСТ 1.2-2009 "Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, применения, обновления и отмены"

Сведения о стандарте

1 ПОДГОТОВЛЕН Межгосударственным техническим комитетом по стандартизации ТК 339 "Безопасность сырья, материалов и веществ" на основе официального перевода на русский язык англоязычной версии международного документа, указанного в пункте 5

2 ВНЕСЕН Федеральным агентством по техническому регулированию и метрологии

3 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол от 27 августа 2015 г. N 79-П)

За принятие проголосовали:

Краткое наименование страны по МК (ИСО 3166) 004-97

Код страны по
МК (ИСО 3166) 004-97

Сокращенное наименование национального органа по стандартизации

Минэкономики Республики Армения

Беларусь

Госстандарт Республики Беларусь

Казахстан

Госстандарт Республики Казахстан

Киргизия

Кыргызстандарт

Росстандарт

Таджикистан

Таджикстандарт

4 Приказом Федерального агентства по техническому регулированию и метрологии от 21 октября 2015 г. N 1611-ст межгосударственный стандарт ГОСТ 33454-2015 введен в действие в качестве национального стандарта Российской Федерации с 1 сентября 2016 г.

5 Настоящий стандарт является модифицированным по отношению к международному документу OECD, Test N 102:1995* "Температура плавления/температурный интервал плавления" ("Melting point/melting range", MOD) путем изменения его структуры для приведения в соответствие с правилами, установленными в ГОСТ 1.5 (подраздел 3.6). Сравнение структуры настоящего стандарта со структурой указанного международного документа приведено в дополнительном приложении ДА.
________________
* Доступ к международным и зарубежным документам, упомянутым в тексте, можно получить, обратившись в Службу поддержки пользователей . - Примечание изготовителя базы данных.


Наименование настоящего стандарта изменено относительно наименования международного документа для приведения в соответствие с ГОСТ 1.5 (подраздел 3.6)

6 ВВЕДЕН ВПЕРВЫЕ


Информация об изменениях к настоящему стандарту публикуется в ежегодном информационном указателе "Национальные стандарты", а текст изменений и поправок - в ежемесячном информационном указателе "Национальные стандарты". В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячном информационном указателе "Национальные стандарты". Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет

1 Область применения

1 Область применения

Настоящий стандарт устанавливает методы определения температуры плавления/температурного интервала плавления. Методы, представленные в настоящем стандарте, могут использоваться для любых химических веществ независимо от степени их чистоты.

2 Термины и определения

В настоящем стандарте применен термин с соответствующим определением:

2.1 температура плавления (Melting point): Температура, при которой происходит фазовый переход исследуемого вещества из твердого состояния в жидкое состояние при атмосферном давлении.

3 Общие положения

3.1 Как правило, переход вещества из твердого состояния в жидкое происходит в определенном температурном интервале, поэтому на практике определяют температуру начала и окончания плавления. В идеальном случае температура плавления вещества идентична температуре отвердевания или замерзания. Для некоторых веществ (например, для промышленной продукции и смесей) определение температуры отвердевания или замерзания является более простой процедурой. Если вследствие определенных свойств вещества (или промышленной продукции) ни один из вышеуказанных параметров невозможно легко измерить, то проводят определение температуры застывания (текучести).

3.2 На значение температуры плавления вещества значительное влияние оказывает присутствие примесей. По этой причине температура плавления также может служить показателем степени чистоты исследуемого вещества.

3.3 Выбор конкретного метода испытания в основном зависит от агрегатного состояния исследуемого вещества и возможности его измельчения.

3.4 Подробное описание оборудования и методов испытания представлено в стандартах, указанных в приложении А. Основные принципы проведения испытания приведены в и .

3.5 Исследуемые показатели и единицы измерения

Единицей измерения температуры плавления в системе СИ является кельвин, К. Перевод значений температуры, выраженных в градусах Цельсия, в градусы Кельвина производится по соотношению:

Т =t +273,15, (1)

где Т - термодинамическая температура, К;

t - температура, °С.

4 Стандартные вещества

Использование стандартных веществ во всех случаях при испытании нового вещества не требуется. Перечень стандартных веществ, используемых для калибровки оборудования, представлен в .

5 Принцип метода

Принцип метода заключается в определении температуры или температурного интервала фазового перехода исследуемого вещества из твердого состояния в жидкое или из жидкого состояния в твердое.

6 Сравнение методов

6.1 Характеристики различных методов определения температуры плавления (температурный интервал и точность) представлены в таблице 1.

Таблица 1 - Характеристики различных методов определения температуры плавления

Температурный интервал, К

Установленная точность, К

Капиллярный/жидкая баня

От 273 до 573

Капиллярный/металлический блок

От 293 до 573

Нагревательный столик Кофлера

От 293 до 573

Определение температуры плавления под микроскопом

От 293 до 573

Дифференциальный термический анализ (ДТА)

Дифференциальная сканирующая калориметрия (ДСК)

От 173 до 1273

±0,5 до 600 К

±2,0 до 1273 К

Температура замерзания

От 223 до 573

Температура застывания

От 223 до 323

7 Процедура испытания

7.1 Капиллярная трубка в жидкой бане

7.1.1 Оборудование

Испытание проводят в стеклянном приборе, представленном на рисунке 1. Выбор жидкости для бани зависит от предполагаемого значения температуры плавления, например жидкий парафин можно использовать для температур не выше 473 К, силиконовое масло - для температур не выше 573 К. Для температур выше 523 К можно использовать смесь из трех частей серной кислоты и двух частей сульфата калия (по массе). При использовании подобной смеси следует соблюдать меры предосторожности.

Для проведения испытания используют термометры, соответствующие требованиям - или термометры с характеристиками не ниже -. Середина ртутного шарика термометра должна соприкасаться с капилляром в месте нахождения пробы исследуемого вещества.

А - сосуд; В - пробка; С - воздушный клапан; D - термометр; Е - вспомогательный термометр; F - жидкий носитель; G - трубка с пробой; внешний диаметр не более 5 мм; капиллярная трубка длиной примерно 100 мм, внутренним диаметром примерно 1 мм и толщиной стенки примерно от 0,2 до 0,3 мм; Н - боковая трубка

Рисунок 1 - Прибор для определения температуры плавления

7.1.2 Процедура испытания

Сухое исследуемое вещество тщательно измельчают и помещают в капиллярную трубку, запаянную с одного конца, таким образом, чтобы уровень наполнения составлял примерно 3 мм после уплотнения пробы. Для получения равномерно уплотненной пробы капиллярную трубку бросают с высоты примерно 700 мм через стеклянную трубку на часовое стекло. Жидкую баню нагревают со скоростью примерно 3 К/мин. Содержимое бани необходимо перемешивать.

Как правило, капиллярную трубку помещают в прибор, когда температура жидкой бани примерно на 10 К ниже предполагаемой температуры плавления. С этого момента и на протяжении фактического плавления скорость повышения температуры должна составлять не более 1 К/мин. При низкой скорости повышения температуры мелко измельченные вещества обычно имеют стадии плавления, представленные на рисунке 2.

Рисунок 2 - Стадии плавления мелко измельченного вещества

На рисунке 2 представлены следующие стадии плавления мелко измельченного вещества:

- стадия А - начало плавления, мелкие капли равномерно прилипают к стенке капиллярной трубки;

- стадия В - образование просвета между пробой исследуемого вещества и стенкой капиллярной трубки за счет сжатия расплава;

- стадия С - осаждение и разжижение сжатой пробы;

- стадия D - окончательное формирование мениска жидкой фазы при нахождении части пробы в твердом состоянии;

- стадия Е - конечная стадия плавления, отсутствие твердых частиц в расплаве.

Во время определения температуры плавления регистрируют значения температуры в начале плавления (стадия А на рисунке 2) и на конечной стадии (стадия Е на рисунке 2).

7.1.3 Вычисление температуры плавления

Скорректированное значение температуры плавления рассчитывают по соотношению

Т =T +0,00016·(T ) ·n , (2)

где T - скорректированное значение температуры плавления;

T - показание термометра D ;

Т - показание термометра Е ;

n - число делений ртутной колонки на выступающем столбике термометра D (число делений на шкале стандартного термометра между поверхностью нагреваемой пробы и уровнем ртути).

7.2 Капиллярная трубка в металлическом блоке

7.2.1 Оборудование

Прибор для визуального наблюдения за проведением испытания представлен на рисунке 3. Прибор состоит:

- из цилиндрического металлического блока, верхняя часть которого является полой и образует камеру;

- металлической пробки с двумя или более отверстиями, позволяющими установить капиллярные трубки в блоке;

- электрической нагревательной системы с регулируемой потребляемой мощностью;

- четырех окон из термостойкого стекла на боковых стенках камеры, расположенных диаметрально под прямым углом;

- окуляра для наблюдения за капиллярной трубкой напротив одного из окон (оставшиеся три окна используют для освещения внутренней части корпуса);

- термометра, соответствующего стандартам, указанным в 7.1.1, или термоэлектрического измеряющего устройства со сравнимой точностью.

А - термометр; В - капиллярная трубка; С - окуляр; D - электросопротивление; Е - металлический нагревательный блок; F - лампа; G - металлическая пробка

Рисунок 3 - Прибор для определения температуры плавления

7.2.2 Прибор с фотодетектором

Капиллярную трубку, заполненную, как описано в 7.1.2, помещают в нагреваемый металлический блок. Скорость повышения температуры доводят до подходящей заранее определенной линейной скорости. Пучок света направляют через пробу на фотоэлемент. При плавлении пробы интенсивность света, достигающая фотоэлемента, повышается, и фотоэлемент посылает стоп-сигнал к цифровому индикатору, регистрирующему температуру нагревательной камеры.

7.3 Нагревательный столик Кофлера

7.3.1 Оборудование

Нагревательный столик Кофлера состоит из двух пластин, изготовленных из металлов с различной теплопроводностью. Столик нагревается электрическим током и сконструирован таким образом, чтобы градиент температуры был практически линейным по его длине. Температура нагревательного столика находится в диапазоне от комнатной температуры до 573 К. Столик снабжен градуированной температурной шкалой и подвижным указателем.

7.3.2 Процедура испытания

Тонкий слой исследуемого вещества помещают на нагревательный столик. В течение нескольких секунд появляется четкая разделяющая линия между твердой и жидкой фазами. Температуру на разделяющей линии определяют по температурной шкале при наведении подвижного указателя на положение разделяющей линии.

7.4 Определение температуры плавления под микроскопом

7.4.1 Процедура испытания

Температуру плавления исследуемого вещества определяют с помощью микроскопа, держатель пробы которого представляет собой металлическую пластинку, являющуюся частью нагревательной камеры. Металлическая пластинка имеет отверстие, обеспечивающее проникновение света от осветительного устройства. Пробу исследуемого вещества помещают на предметное стекло над отверстием и покрывают другим предметным стеклом для обеспечения минимального воздействия воздуха. Металлическую пластинку постепенно нагревают до тех пор, пока не начнется процесс плавления, и регистрируют температуру. Точность измерения для кристаллических веществ можно повысить за счет использования поляризованного света.

7.5 Дифференциальный термический анализ (ДТА)

Пробы исследуемого вещества и стандартного вещества одновременно подвергают идентичной контролируемой температурной программе. Когда исследуемое вещество проходит фазовый переход, то соответствующее изменение энтальпии приводит к эндотермическому (плавление) или экзотермическому (замерзание) отклонению от базовой линии регистрируемой термической кривой.

7.6 Дифференциальная сканирующая калориметрия (ДСК)

Пробы исследуемого вещества и стандартного вещества одновременно подвергают идентичной контролируемой температурной программе. Регистрируют разницу в потребляемой энергии, необходимой для поддержания одинаковых температур исследуемого вещества и стандартного вещества. Когда исследуемое вещество проходит фазовый переход, то соответствующее изменение энтальпии дает отклонение от базовой линии кривой теплового потока.

7.7 Определение температуры замерзания

Пробу исследуемого вещества помещают в пробирку и непрерывно перемешивают. По мере охлаждения пробы через регулярные интервалы времени измеряют ее температуру. Как только температура становится постоянной для нескольких показаний (с поправкой на погрешность термометра), то ее регистрируют как температуру замерзания. Следует избегать переохлаждения посредством поддержания равновесия между твердой и жидкой фазами.

7.8 Определение температуры застывания (текучести)

Метод определения температуры застывания (текучести) был разработан для нефтяных масел и подходит для исследования масляных веществ с низкими температурами плавления. После предварительного нагревания пробу исследуемого вещества постепенно охлаждают и измеряют ее текучесть при понижении температуры на каждые 3 К. В качестве температуры застывания (текучести) регистрируют самую низкую температуру, при которой наблюдается текучесть вещества.

8 Отчет о проведении испытания

Отчет о проведении испытания должен содержать следующую информацию:

- метод испытания;

- химическая идентификация и примеси (предварительная стадия очистки, при проведении);

- установленная точность метода;

- температура плавления (среднее значение для не менее двух измерений, находящихся в диапазоне установленной точности; если разница температуры в начале и на конечной стадии плавления находится в пределах точности, то температуру на конечной стадии плавления принимают за температуру плавления; в ином случае регистрируют два значения температуры; если вещество разлагается или сублимируется до того, как происходит плавление, то регистрируют температуру, при которой наблюдается подобный эффект);

- вся информация и примечания, относящиеся к интерпретации результатов, особенно в отношении примесей и физического состояния исследуемого вещества.

Приложение А (справочное). Перечень стандартов

Приложение А
(справочное)

ASTM D 97-66 Стандартный метод определения температуры затвердевания нефтяных масел (Standard test method for pour point of petroleum oils)

ASTM E 324-69 Стандартный метод определения точек сравнительного первоначального и конечного плавления и интервала плавления органических веществ (Standard test method for relative initial and final melting points and the melting range of organic chemicals)

ASTM E 472-86 Стандартная практика составления отчета о термоаналитических данных (Standard practice for reporting thermoanalytical data)

ASTM E 473-85 Стандартные определения терминов, относящихся к термическому анализу (Standard definitions of terms relating to thermal analysis)

ASTM E 537-76 Стандартный метод оценки термической стабильности химических веществ методами дифференциального термического анализа (Standard method for assessing the thermal stability of chemicals by methods of differential thermal analysis)

ANSI/ASTM D 3451-76 Стандартные рекомендованные методы тестирования полимерных порошков и порошковых покрытий (Standard recommended practices for testing polymeric powders and powder coatings)

BS 4633:1970 Метод определения точки кристаллизации (Method for the determination of crystallizing point)

BS 4634:1970 Метод определения точки плавления и/или температурного интервала плавления (Method for the determination of melting point and/or melting range)

BS 4695:1980 Метод определения температуры плавления нефтяного парафина (кривая охлаждения) (Method for the determination of melting point of petroleum wax (cooling curve))

DIN 51005:2005 Термический анализ (ТА) (Thermische Analyse (ТА))

DIN 51421:1972 Определение температуры замерзания авиационного топлива, бензина и моторных бензолов (Bestimmung des Gefrierpunktes von Flugkraftstoffen, Ottokraftstoffen und Motorenbenzolen)

DIN 53175:1991 Определение точки затвердевания жирных кислот (Bestimmung des Erstarrungspunktes von )

DIN 53181:1991 Связующие для красок и подобных материалов покрытия, определение интервала плавления смолы капиллярным методом (Bindemittel fur Lacke und ahnliche Beschichtungsstoffe; Bestimmung des Schmelzbereiches von Harzen Kapillar-Verfahren)

DIN 53736:1973 Визуальное определение температуры плавления частично кристаллических материалов (Visuelle Bestimmung der Schmelztemperatur von teilkristallinen Kunststoffen)

ISO 3016:1994 Нефтепродукты. Определение температуры потери текучести (Petroleum oils - Determination of pour point)

ISO 1392:1977 Определение точки кристаллизации. Общий метод (Method for the determination of the crystallizing point)

ISO 2207:1980 Парафины нефтяные. Определение температуры застывания (Petroleum waxes - Determination of congealing point)

JIS К 00-64 Методы испытания температуры плавления химических продуктов (Testing methods for melting point of chemical products)

JIS К 00-65 Методы определения температуры замерзания химических продуктов (Test methods for freezing point of chemical products)

NF T 20-051 Метод определения температуры кристаллизации (Methode de determination du point de cristallisation)

NF T 60-114 Температура плавления парафинов (Point de fusion des paraffines)

NBN 52014 Отбор и анализ проб нефтепродуктов: температура помутнения и предепьная температура застывания (Echantillonnage et analyse des produitis de petrole: Point de trouble et point d"ecoulement limite)

Приложение ДА (справочное). Сопоставление структуры настоящего стандарта со структурой международного документа

Приложение ДА
(справочное)


Таблица ДА.1

Структура настоящего стандарта

Структура международного документа

Подразделы

Разделы

Библиография

Литература

Приложение А

Перечень стандартов

Библиография

Le Neindre, В. and Vodar B, eds. (1975). IUPAC, Experimental Thermodynamics, Vol. II, Butterworths, London, pp. 803-834. (Экспериментальная термодинамика)

Weissberger, R., ed. (1959). Technique of Organic Chemistry, Vol. I, Part I, Chapter VIII, Physical Methods of Organic Chemistry, 3 ed., Interscience Publ., New York (Физические методы органической химии)

IUPAC (1976). Physicochemical measurements: Catalogue of reference materials from national laboratories, Pure and Applied Chemistry, 48, 505-515/(Физико-химические измерения. Перечень стандартных веществ для лабораторий. Чистая и прикладная химия)

ASTM Е 1-03 Standard Specification for ASTM Thermometers (Стандартные спецификации для ASTM термометров)

DIN 12770-1982 Laboratory glassware; liquid-in-glass thermometers; general requirements (Термометры лабораторные стеклянные жидкостные. Общие технические требования)

JIS К 8001:2015 General rule for test methods of reagents (Общие правила для методов испытания реагентов)

УДК 658.382.3:006.354

МКС 13.020.01

Ключевые слова: химическая продукция, окружающая среда, температура плавления, температурный интервал плавления



Электронный текст документа
подготовлен АО "Кодекс" и сверен по:
официальное издание
М.: Стандартинформ, 2016

  • А – САР тиску пари на виході з барабану котла; б – САР витрати повітря; в – САР тиску палива; г – САР температури палива; д – САР тиску пари перед форсунками
  • Ағыстағы газдың температурасын анықтау. Тежелу температурасы. Температураны өлшейтін қабылдағыштар.
  • Абиотические и биотические факторы, прямое и сигнальное действие абиотических фак-в. Действие температуры на живые орг-мы.
  • Аварийные переключения, как правило, производятся в ограниченном временном интервале и требуют от персонала четкости, самостоятельности и ответственности при их выполнении.
  • Адсорбция зависит от концентрации компонентов и температуры.
  • Анализ распределения судейских оценок для построения шкалы равных интервалов
  • В выводе необходимо отметить, образуют ли исследуемые вещества химические соединения; температуру плавления и состав эвтектической смеси.
  • Вероятностные, числовые и интервальная характеристики результатов измерений.
  • Конечная структура и механические свойства деформированного металла зависят от термомеханического режима горячей штамповки, определяемого наряду с температурой такими факторами, как степень деформации, скорость деформаций, вид напряженного состояния.

    Температурный интервал штамповки при этом играет основную роль: максимальная температура нагрева обеспечивает наивысшую пластич­ность обрабатываемого металла, а минимальная температура конца штамповки предотвращает нежелательный рост зерна. Главными фак­торами, определяющими указанный допустимый интервал температур штамповки, являются химический состав сплава и его физические свойства.

    Необходимый интервал температур штамповки определяется време­нем, нужным для выполнения данной операции, и лежит в пределах допустимого интервала. Иногда целесообразно снижать верхнюю гра­ницу температурного интервала из-за необходимости уменьшения окалинообразования или обезуглероживания металла.

    Температура горячей штамповки находится между температурами плавления и конца рекристаллизации сплава. Вблизи температуры плавления стали находится область температур пережога, связанного с оплавлением и окислением границ зерен. Несколько ниже находится зона температур перегрева, которая характеризуется значительным ростом зерен. Однако крупнозернистая структура большинства марок стали хорошо поддается ковке. При этом зерно измельчается.

    Максимальная температура нагрева может находится в области темпе­ратур перегрева, которая начинается при температуре критического роста зерна.

    Установление температурного интервала ковки связано с именем Д.К. Чернова (1868 г.), который указывал, что сталь следует ковать при определенных температурах, которые обеспечивают хорошее ка­чество поковок.

    Для низкоуглеродистой стали область ковочных температур совпадает с однофазной аустенитной областью и частично распро­страняется на двухфазную область, где свободной структурной составляющей является феррит.

    Заэвтектоидные стали штампуют в аустенитной и двухфазной областях со структурно свободным цеметитом. Штамповка среднеуглеродистых сталей должна заканчиваться выше линии АС 3 , что обеспечивает устойчивую мелкозернистую структуру.

    Для низкоуглеродистой стали допустима более низкая температу­ра конца штамповки (между АС 3 и АС 1 ) особенно для крупных поковок.



    Для заэвтектоидной стали, у которой, структурно свободной фазой является хрупкий цементит, температура конца штамповки должна быть по возможности более низкой, а охлаждение быстрым во избежание образования цементитной сетки. Однако эти рекомендации приемлемы для стали с большим содержанием углерода, у которого вследствие графитизации возможен "черный излом».

    Максимальный интервал ковочных температур для низкоуглеродистых сталей достигает 600°, для эвтектоидных сталей - 400 ¼ 450°, для заэвтектоидных сталей – 200 ¼ 300°. Для высоколегированных и жаропрочных сталей он уменьшается до 100 ¼ 150°.

    Необходимый интервал может совпасть с допустимым лишь в частном случае при равенстве времени, затрачиваемого на штамповку, и времени остывания заготовки в интервале ковочных температур. Обе эти величины могут в значительной степени изменяться в зависимости от сложности поковки и темпа работы, зависящего от механизации про­цесса и быстроходности оборудования.

    Нагрев металла при обработке давлением. Значение нагрева.

    Тема 2.2. Физико-механические основы обработки металлов давлением. Нагрев металла

    Вопросы:

    1. Пластичность металлов и сопротивление деформиро­ванию. Влияние различных факторов на пластичность.

    2. Физическая сущность пластической деформации. Влия­ние обработки давлением на структуру и свойства ме­талла.

    5. Общая характеристика и принцип работы нагреватель­ных печей и электронагревательных устройств.

    1. Пластичность – это способность металла изменять под действием внешних сил свою форму и размеры не разрушаясь, и сохранять полученную форму после прекращения действия силы.

    Пластичность зависит от природы вещества (его химического состава и структурного строения), температуры, скорости деформации, степени наклепа и от условий напряженного состояния в момент деформации.

    Влияние природных свойств металла . Пластичность находится в прямой зависимости от химического состава материала. С повышением содержания углерода в стали пластичность падает. Большое влияние оказывают элементы, входящие в состав сплава как примеси. Олово, сурьма, свинец, сера не растворяются в металле и, располагаясь по границам зерен, ослабляют связи между ними. Температура плавления этих элементов низкая, при нагреве под горячую деформацию они плавятся, что приводит к потере пластичности. Примеси замещения меньше снижают пластичность, чем примеси внедрения.

    Пластичность зависит от структурного состояния металла , особенно при горячей деформации. Неоднородность микроструктуры снижает пластичность. Однофазные сплавы, при прочих равных условиях, всегда пластичнее, чем двухфазные. Фазы имеют неодинаковые механические свойства, и деформация получается неравномерной. Мелкозернистые металлы пластичнее крупнозернистых. Металл слитков менее пластичен, чем металл прокатанной или кованой заготовки, так как литая структура имеет резкую неоднородность зерен, включения и другие дефекты.

    Влияние температуры . При очень низких температурах, близких к абсолютному нулю, все металлы хрупкие. Низкую пластичность необходимо учитывать при изготовлении конструкций, работающих при низких температурах.

    С повышением температуры пластичность малоуглеродистых и среднеуглеродистых сталей повышается. Это объясняется тем, что происходит исправление нарушений границ зерен. Но повышение пластичности происходит не монотонно. В интервалах некоторых температур наблюдается «провал» пластичности. Так для чистого железа обнаруживается хрупкость при температуре 900…1000°С. Это объясняется фазовыми превращениями в металле. Снижение пластичности при температуре 300…400°С называется синеломкостью, при температуре 850…1000°С – красноломкостью.


    Влияние наклепа и скорости деформации . Наклеп понижает пластичность металлов.

    Влияние скорости деформации на пластичность двояко. При горячей обработке давлением повышение скорости ведет к снижении пластичности, т.к. наклеп опережает рекристаллизацию. При холодной обработке повышение скорости деформации чаще всего повышает пластичность из-за разогрева металла.

    Влияние характера напряженного состояния . Характер напряженного состояния оказывает большое влияние на пластичность. Возрастание роли напряжений сжатия в общей схеме напряженного состояния увеличивает пластичность. В условиях резко выраженного всестороннего сжатия возможно деформировать даже очень хрупкие материалы. Схема всестороннего сжатия является наиболее благоприятной для проявления пластических свойств, так как при этом затрудняется межзеренная деформация и вся деформация протекает за счет внутризеренной. Возрастание роли напряжений растяжения приводит к снижению пластичности. В условиях всестороннего растяжения с малой разностью главных напряжений, когда касательные напряжения малы для начала пластической деформации, даже самые пластичные материалы хрупко разрушаются.

    2. Обработка металлов давлением является процессом пластичес­кой деформации . Выше указывалось, что между атомами металлов действуют внутренние уравновешивающие силы. Если приложить к металлу внешнюю силу, то это равновесие нарушается и атомы смещаются относительно друг друга до тех пор, пока не будет до­стигнуто новое равновесие между атомными силами притяжения и отталкивания, с одной стороны, и внешней силой – с другой. Та­кой металл находится в напряженно-деформированном состоянии.

    Пластической деформации металлов всегда предшествует упру­гая деформация. Она сохраняется до тех пор, пока действует внеш­няя сила. Если сдвиг атомов происходит в пределах параметра кристаллической решетки, то такую деформацию называют упру­гой. После снятия внешней силы искажение кристаллической ре­шетки исчезает и атомы возвращаются в исходное состояние. Если сдвиг атомов превышает параметр кристаллической решетки, то деформацию называют упруго – пластической. После снятия внешней силы искажение кристаллической решетки может исчезнуть (при со­ответствующей температуре), но атомы в исходное состояние не возвращаются.

    В результате холодной деформации прочностные свойства металла и твердость с ростом степени деформации увеличиваются, а его пластические свойства уменьшаются.

    Механические свойства после горячей обработки давлением литого металла значительно повышаются. Это повышение прочности и пластичности металла происходит главным образом за счет образования мелких зерен взамен дендритов литого металла, а также за счёт заварки усадочных пустот и рыхлости, образующихся в слитке в процессе кристаллизации жидкого металла.

    3. Нагрев заготовок перед обработкой давлением произ­водится с целью повышения пластичности металла, в ре­зультате чего его сопротивление деформации значительно уменьшается (в 10…15 раз) по сравнению с обычным холодным состоянием. Следовательно, для деформации нагретых заготовок требуется прикладывать меньшие усилия, чем при деформации тех же заготовок в холод­ном состоянии, что позволяет снизить стоимость изготов­ляемых изделий. Нагрев должен обеспечить равномер­ную температуру по сечению заготовки, минимальное окисление и обезуглероживание стали.

    Рассмотрим изменения механических свойств отожженной мягкой (0,3 % С) стали в зависимости от температуры ее нагрева. При на­греве выше 300 °С идет процесс разупрочнения стали, увеличивается пластичность и облегчается обработка давлением, следовательно, для такой обработки нагрев стали должен быть достаточно высоким, однако нельзя допускать пережога, который наблюдается при на­греве, близком к температурам линии солидуса.

    Пережженный металл является неисправимым браком. Ниже зоны пережога лежит зона перегрева, выражающаяся резким ростом зерна аустенита, что приводит к образованию крупнозернистой структуры, определяющей пониженную пластичность при обработке давлением и пониженную прочность охлажденных Рис. 23

    изделий. Пере­гретый металл также является браком, но его можно исправить отжигом или нормализацией.

    Заканчивать обработку давлением следует также при оптималь­ной температуре; продолжение обработки при более низкой темпе­ратуре приводит к неполной рекристаллизации и наклепу.

    4. При обработке давлением металл нагревают для снижения сопротив­ления деформации, придания ему достаточной пластичности, умень­шения расхода энергии на обработку и увеличения обжатия.

    Качество нагрева металла оказывает значительное влияние на производительность оборудования, размер зерен изделия, механи­ческие свойства, службу деформирующего инструмента, выход годного металла.

    Для каждого металла установлен определенный интервал тем­ператур (начальная и конечная температуры), в котором его обра­ботка давлением осуществляется наилучшим образом, обеспечи­вая хорошую пластичность при минимальном сопротивлении дефор­мации.

    При горячей обработке металлов давлением температура нагре­ва зависит от ряда факторов и, в первую очередь, от способа обра­ботки и свойств металла. Так, прокатку ведут при более высокой температуре, чем ковку и штамповку. Температурный интервал нагрева выбирают по диаграмме состояния сплава.

    Начальную температуру обработки t н рекомендуется выбирать по формуле

    t н = αt пл,

    где t пл – температура плавления сплава, определяемая по диаграм­ме состояния, ° С;

    α – коэффициент понижения температуры, α= 0,85…0,95.

    Коэффициент понижения температуры учитывает возможность предотвращения перегрева или пережога при температурах, близ­ких к температуре плавления. Чем выше температура плавления сплава и чем больше склонен сплав к перегреву и пережогу, тем ниже коэффициент α.

    Если с понижением температуры не происходит фазовых пре­вращений (например, при полной растворимости металлов), то ко­нечную температуру деформации t к можно определять по формуле

    t к = 0,7t пл .

    При этой температуре и выше в большинстве случаев возможна деформация с полным разупрочнением металла. Ниже этой тем­пературы сопротивление металла деформации наиболее интенсивно повышается.

    В случае, если обработка давлением с нагревом должна обес­печить получение определенных механических свойств, то темпера­туру и степень обжатия в конце обработки выбирают по диаграммам рекристаллизации (см. рис. 22). В этом Рис. 22

    случае температура конца обработки будет ниже 0,7t пл.

    При разработке технологического процесса обработки давле­нием температурный интервал деформации углеродистых сталей определяется по диаграмме состояния сплавов железо – углерод (рис.22, заштрихованная область). Следует отметить, что тем­пература обработки заэвтектоидных сталей находится ниже ли­нии ES (двухфазное состояние).

    5. Оборудование, применяемое для нагрева заготовок перед обработкой давлением, подразделяется на нагревательные печи и электронагревательные устройства .

    К нагревательным печам относят оборудование, в котором теплота к заготовке передается конвекцией и излучением из нагревательной каме­ры.

    Нагревательные печи классифици­руют по следующим основным признакам: 1) источнику энергии – пламенные, в которых теплоту получают за счет химических реакций горения топлива, и электриче­ские печи; 2) назначению – кузнечные печи и печи про­катного производства; 3) принципу действия – камерные и методические.

    Снизу рабочее пространство печи ограничено подом, на котором располагают нагреваемые заготовки, с боков – стенками печи, на которые опирается свод, замыкающий верхнюю часть ра­бочего пространства. В стенках печи имеются одно или два окна для загрузки холодных и выгрузки нагретых заго­товок. Отработанные печные газы отводятся из рабочего пространства в вытяжную трубу через специальные ка­налы – боров или дымоход. Пол, стены и свод печей выполняются из огнеупорных материалов. Необходимую температуру (до 1300 °С и более) в печах получают сжи­ганием газообразного или жидкого топлива либо с помощью электриче­ских нагревателей. По принципу действия печи подразделяются на ка­мерные и методические.

    К камерным относят печи, имеющие одинаковую тем­пературу по всему рабочему про­странству. Загрузку и выгрузку заготовок производят по мере не­обходимости. Такие печи обычно имеют одно окно. Нагрев под ковку крупных слитков и заготовок для облегчения их загрузки и выгрузки производят в больших камерных печах с выдвижным подом (рис.23, б), с приводом от электродвигателя или гидроцилиндра. Камерные печи используют в ковочно-штамповочном производстве.

    Методические печи , как правило, вытянутые в одном направлении, имеют загрузочное окно, в районе которого устанав­ливается относительно невысокая температура, удлиненную камеру печи, по длине которой темпера­тура повышается, вплоть до ко­нечной, вблизи у окна выгрузки (рис. 23, а). Нагреваемые заго­товки перемещаются с установ­ленной скоростью от загрузочно­го до окна выгрузки. В методиче­ских печах пламенного типа по­ток нагревающих газов направлен навстречу движению заготовок, что способствует их равномерному нагреву.

    С целью экономии топлива газы, отходящие из печи, используют для подогрева горючих смесей до 500…900 °С. Это позволяет повысить эффек­тивность работы и экономить до 35% топлива.

    Рис.23. Нагревательные печи:

    а – методическая печь; 1 – толкатель; 2 – методическая зона; 3 – сварочная зо­на; 4 – торцовые горелки; 5 – роликовый конвейер; 6 – нижние горелки; 7 - ре­куператоры; б – камерная регенеративная печь с выдвижным подом: 1 – под; 2 – слиток; 3 – горелки или форсунки; 4 – каналы для подачи нагретого воздуха или отвода продуктов горения; 5 – песчаный затвор; 6 – шибер для регулирования по­дачи воздуха; 7 – регенератор; 8 – канал для отвода продуктов горения (дымоход); в – карусельная печь с вращающимся по­дом: 1 – под; 2 – цилиндрический выступ; 3 – зона для подогрева; 4 – дымоход; 5 – окно загрузки; 6 - пе­регородка; 7 – окно выдачи; 8 – зона высоких температур; 9 – горелки или форсунки

    На рис.2, а показаны методические печи, в которых продвижение слитков и за­готовок осуществляется толкательным механизмом с ме­ханическим или пневматическим приводом, а также на­гревательные колодцы, представляющие собой разновид­ность камерных печей. Крышка колодца выполнена на уровне пола цеха, а слитки устанавливают в них в верти­кальном положении для лучшего обогрева. Методические печи применяют в прокатном производстве.

    В ковочно-штамповочном производстве используют ка­мерные, методические и полуметодические печи. Иногда нагрев небольших заготовок из черных или цветных металлов с целью предохранения их от окисления выполняют в гер­метичном муфеле, изготовленном из жаропрочного мате­риала и устанавливаемом в камеру печи, которую назы­вают муфельной печью. В цехах горячей объемной штампов­ки применяют полу- методические печи, которые короче ме­тодических, и печи с вращающимся подом (рис.23, в), пред­ставляющие собой разновидность полуметодических печей.

    Рис.24. Схемы электронагревательных установок:

    а – для индукционного нагрева: 1 – генератор (преобразователь частоты тока); 2 – индуктор; 3 – нагреваемая заготовка; 4 – батарея конден­саторов; 5 – контактор для включения и выключения установки; б – для нагрева методом сопротивления: 1 – нагреваемая заготовка; 2 – контакты; 3 – вторичная обмотка понижающего трансформатора; 4 – первичная обмотка трансформатора; 5 – контактор для включения и выключения установки

    В электронагревательных устройствах теплота выделяется непосредст­венно в самой заготовке в виде теплоты сопротивления при пропускании через нее большой силы тока (рис.24, б) либо при возбуждении в ней вих­ревых токов в специальных индукционных печах (рис.24, а).

    При нагревании заготовки проходящим током основной частью является трансформатор, обеспечивающий необходимую силу тока. Первичная обмотка его обычно секционирована, что позволяет регулировать в необходимых преде­лах силу тока нагрева. Вторичная обмотка состоит чаще всего из одного, редко двух-трех витков. Такая конструкция обеспечивает напряжение на зажимах дета­лей 2…12 В и силу тока до 200…300 тыс. А. Сила тока выбирается исходя из рода материала, сечения нагреваемой заготовки и необходимой скорости нагрева. Установки для контактного нагрева сопротивлениемприменяют для нагрева длинных заготовок постоянного сечения диаметром 15…75 мм.

    Основной частью установки для индукционного нагрева (рис.24, а), явля­ются генератор повышенной частоты (50…8000 Гц) и собственно индуктор, вы­полненный в виде многовитковой спирали из медной круглой или прямоуголь­ной трубы. В необходимых случаях индуктор охлаждается проточной водой, подаваемой по внутренней полости. Внутрь спирали помещается корпус камеры,выполненный из огнеупорного диэлектрического материала. Нагреваемые заго­товки помещаются в корпус и перемещаются в нем с помощью толкателя.

    По индуктору, подключенному к генератору повышенной частоты, про­текает переменный ток, образующий поле индукции. Вследствие этого в за­готовках, находящихся в переменном магнитном поле, возникают вихревые токи, сосредоточенные, в основном, в поверхностных слоях заготовки. Тол­щина нагреваемого слоя зависит от частоты тока; чем она выше, тем более поверхностным и интенсивным будет нагрев. Поэтому для разогрева мас­сивных заготовок иногда применяют промышленную частоту (50 Гц). Глу­бина прогрева в этом случае может достигать 25…30% от толщины заготов­ки. Прогрев по всему сечению, т. е. центральной части заготовки, происходит за счет теплопроводности. За время прохождения заготовки от входа в индуктор до выхода должен быть обеспечен нагрев до необходимой температуры.

    Нагрев металла повышает его пластичность. Однако, температуры нагрева должны лежать в определенном интервале.

    Слишком низкие температуры нагрева могут вызывать упрочнение (наклеп) металла. Упрочнение (наклеп) – явление снижения запаса пластичности материала вследствие искажения кристаллической решетки и изменения формы зерен металла под действием силового инструмента (штампа). Упрочнение может вызвать разрушение исходной заготовки в процессе обработки давлением вследствие снижения пластичности.

    Слишком высокие температуры нагрева вызывают такие явления, как перегрев и пережог.

    Перегрев характеризуется резким ростом размеров зерна, обуславливающим снижение пластичности металла. Перегрев ухудшает свойства получаемых изделий и его следует избегать. Последствия перегрева в большинстве случаев можно исправить последующей термообработкой (отжигом), но для ряда материалов такое исправление вызывает значительные трудности.

    Пережог возникает при более высоких температурах, чем перегрев. Пережог характеризуется окислением и оплавлением границ зерен, что нарушает связь между ними. В случае пережога материал не может обрабатываться давлением и должен быть отправлен на переплавку, поскольку пережог является неисправимым видом брака.

    Температурный интервал, расположенный между оптимальными температурами начала и конца горячей обработки материала, называется температурным интервалом горячей обработки давлением . Этот интервал находится в области максимальной пластичности конкретного материала. Причем, в этом температурном интервале не должны возникать явления упрочнения (наклепа) металла, перегрева и пережога.

    Температурный интервал горячей обработки давлением для углеродистых и легированных сталей приведен в табл. 3.

    Объем последующей механической обработки, связанной с получение детали из заготовки, с определенной степенью приближения оценивается коэффициентом использования металла заготовки – КИМз. Чем больше КИМз, тем меньше расход металла, удаляемого в отход при механической обработки заготовки, полученной обработкой давлением.

    КИМз = Мдетали / Мпоковки = Vдетали /Vпоковки.

    Объем поковки (Vпоковки) отличается от объема детали на величину штамповочных уклонов, припусков на механическую обработку, радиусов скруглений и напусков.

    Объем металла, приходящегося на радиусы скруглений пересекающихся поверхностей, рассчитывается как половина объема усеченного конуса, образующая которого проходит через места сопряжения радиуса с пересекающимися поверхностями.

    Нагрев металла перед обработкой давлением.

    При определенных температурах пластичные материалы обладают высокой пластичностью и низким сопротивлением деформированию. Эти температуры имеют верхний и нижний пределы, между которыми лежит температурный интервал обработки давлением.

    При холодной деформации (т.е. при температурах для чистых металлов обычно ниже 0.3 абсолютной температуры плавления) происходит упрочнение (наклеп) деформируемого металла. При этом наблюдается вытягивание его зерен в направлении деформации, создается определенная кристаллографическая ориентировка зерен (текстура), происходит искажение кристаллографических решеток, накопление дополнительных (вторичных) напряжений и др. Явления. Пределы прочности, текучести и твердость металла увеличиваются, а относительное удлинение, поперечное сужение и ударная вязкость уменьшаются. С увеличением деформации упрочнение возрастает, дальнейшая деформация становится затруднительной и, наконец, невозможной. Тогда наступает разрушение деформируемого металла.

    При повышении температуры деформации в металле возникают процессы, препятствующие упрочнению, а именно возврат (отдых) и кристаллизация (разупрочняющие процессы).

    Возврат , признаки которого проявляются при температуре обычно свыше 0.3 абсолютной температура плавления, заключается в уменьшении получаемых при деформации искажении кристаллографической решетки и снижение дополнительных напряжений. Однако при наличии возврата признаки упрочнения все же проявляются, хотя в меньшей степени, поэтому основную роль в разупрочнении играет рекристаллизация, признаки которой проявляются при температуре обычно свыше 0.4 температуры плавления.

    Рекристаллизация заключается в появлении в деформированном слое металла новых центров кристаллизации и росте вокруг них новых зерен с новой ориентировкой кристаллографической решетки и новыми границами между зернами. При полностью протекшей рекристаллизации деформированный металл не имеет следов упрочнения.

    Если рекристаллизация протекает не полностью, то наблюдается снижение пластичности. Это объясняется тем, что металл становится неоднородным в результате наличия рекристаллизованных и нерекристаллизованных зерен, а часто и неоднофазного состояния (если температура совпадает с температурой фазовых превращений). Поэтому необходим нагрев до температуры, обеспечивающей полную рекристаллизацию металла при ковке или штамповке. Это определяет нижнюю границу температурного интервала горячей обработки металлов давлением.

    Завершение процесса рекристаллизации зависит не только от температуры, но и от скорости деформации, поскольку рекристаллизация протекает не мгновенно. Этим объясняется меньшее сопротивление деформирования металла в горячем состоянии на прессе, чем на молоте. С повышением температуры пластичность увеличивается. Однако при температурах, близких к температуре плавления происходит оплавление и окисление металла по границе зерен, связь между зернами нарушается, и металл полностью теряет пластичность и прочность. Это явление называется пережогом .



    Ниже температуры пережога находится температура перегрева . При этой температуре в металле происходит процесс непрерывного роста зерен (собирательная кристаллизация). Эту температуру можно назвать критической. В то же время, при обработке давлением зерна разрушаются. Поэтому для ряда металлов, например для большинства сталей, крупнозернистость не является препятствием при ковке и штамповке. Таким образом, верхний интервал горячей обработки давлением находится либо ниже температуры перегрева, либо ниже температуры пережога, в пределах температуры перегрева (зависит от вида и свойств металла).

    Значение температур начала и конца обработки давлением для сплавов, имеющих основу, резко колеблются в зависимости от содержания в них других компонентов. Например, для различных деформируемых алюминиевых сплавов верхний предел находится между 470 - 500˚С, нижний – между 350 - 400˚С; у медных сплавов верхний предел – между 700 - 900˚С, нижний – между 550 - 800˚С; у магниевых сплавов верхний – 370 - 430˚С, нижний – 300 - 350˚С; у титановых сплавов верхний – 1000 - 1200˚С, нижний – 700 - 950˚С; у стали верхний – 1100 - 1300˚С, нижний – 800 - 950˚С.

    Если отметить на диаграмме состояние сплава железо – углерод температурный интервал обработки давлением углеродистых сталей, то его верхний предел будет находиться на кривой, проходящей на 150 - 200˚С ниже линии солидуса. Нижний предел температурного интервала для углеродистых сталей соответствует примерно 800˚С, т.е. приблизительно на 75˚С выше линии PSK. Таким образом, сталь, содержащая от 0.4% до 1% С от начала до конца обработки давлением находится в однофазном состоянии (аустенит).Углеродистую сталь с меньшим содержанием углерода заканчивают обрабатывать при наличии в ней двух фаз: аустенита и феррита. При этом получается некоторый наклеп, который легко снимается последующей термической обработкой.

    Углеродистую сталь, содержащую более 1%С, заканчивают обрабатывать также при наличии в ней двух фаз: аустенита и вторичного цементита. Но в данном случаи обработка давлением, дробя сетку цементита, оказывает благоприятное влияние на структуру стали. Температурный интервал ковки и штамповки цветных металлов и сплавов определяют по диаграмме пластичности, кривым течения, диаграммам сопротивления деформации, диаграммам состояния и диаграммам рекристаллизации.