ภาพวาดแผงวงจรพิมพ์ขนาดเล็ก Lanzar การตั้งค่าเพาเวอร์แอมป์ Lanzar - แผนภาพวงจรของเพาเวอร์แอมป์, คำอธิบายของแผนภาพวงจร, คำแนะนำสำหรับการประกอบและการปรับแต่ง บางนิกายต้องมีคำอธิบายพิเศษ

แอมพลิฟายเออร์นี้แตกต่างจากวงจรดั้งเดิมทั้งในฐานองค์ประกอบและโหมดการทำงานขององค์ประกอบในแอมพลิฟายเออร์ซึ่งทำให้ไม่เพียงเพิ่มกำลังขับอย่างมีนัยสำคัญ แต่ยังลด THD อีกด้วย แผนผังของแอมพลิฟายเออร์แสดงในรูปที่ 1 ลักษณะทางเทคนิคโดยย่อสรุปไว้ในตาราง ควรสังเกตทันทีว่าอัตราขยายที่แท้จริงค่อนข้างสูง (31 dB) และหากคุณต้องการลดระดับ THD คุณต้องเพิ่มค่าของตัวต้านทาน R9 เป็น 680 โอห์ม

ในกรณีนี้อัตราขยายที่แท้จริงจะเป็น 26 dB เนื่องจากอัตราส่วนของค่าของตัวต้านทาน R9-R14 จะกำหนดอัตราขยายของเครื่องขยายเสียงเอง ระดับ THD เมื่อใช้ตัวต้านทาน 680 โอห์มจะลดลงเหลือ 0.04% สำหรับเวอร์ชันไบโพลาร์เต็ม และเหลือ 0.02% สำหรับตัวเลือกที่มีทรานซิสเตอร์เอฟเฟกต์สนามในระยะสุดท้ายที่โหลด 4 โอห์มและกำลังเอาต์พุต 100 W

วงจรของแอมพลิฟายเออร์มีความสมมาตรเกือบทั้งหมด ซึ่งช่วยให้มีการบิดเบือนน้อยที่สุดและมีเสถียรภาพทางความร้อนค่อนข้างสูง สัญญาณจากแหล่งสัญญาณเสียงจะถูกป้อนไปยังตัวเก็บประจุผ่านคอมโพสิต C1-C3 การตัดสินใจสร้างตัวเก็บประจุแบบพาสทรูนี้เกิดจากการที่ตัวเก็บประจุด้วยไฟฟ้ามีกระแสรั่วไหลเมื่อใช้ขั้วย้อนกลับ

ในกรณีนี้ตัวเก็บประจุที่เชื่อมต่อแบบอนุกรมสองตัว C2-C3 ทำให้สามารถกำจัดผลกระทบนี้ได้อย่างสมบูรณ์ นอกจากนี้ตัวเก็บประจุด้วยไฟฟ้าที่ความถี่สูงกว่า 10 kHz จะเพิ่มค่ารีแอกแตนซ์อย่างมีนัยสำคัญแล้วและตัวเก็บประจุ C1 จะชดเชยการเปลี่ยนแปลงพารามิเตอร์นี้

ถัดไป สัญญาณสลับอินพุตจะถูกแบ่งออกเป็นสองเส้นทางการขยายที่เกือบจะเหมือนกัน - สำหรับครึ่งคลื่นบวกและลบ หลังจากดิฟเฟอเรนเชียลแอมพลิฟายเออร์บนทรานซิสเตอร์ TV1, VT3 (VT2, VT4) สัญญาณจะเข้าสู่สเตจแอมพลิฟายเออร์บนทรานซิสเตอร์ที่เชื่อมต่อตามวงจรอีซีแอลทั่วไป (VT5 และ VT6) และในที่สุดก็ได้รับแอมพลิจูดที่ต้องการ

ในความเป็นจริงการขยายสัญญาณอินพุตเสร็จสมบูรณ์แล้ว - ได้รับแอมพลิจูดขนาดใหญ่เพียงพอแล้วและสิ่งที่เหลืออยู่คือการขยายสัญญาณตามกระแสซึ่งมักใช้ผู้ติดตามตัวปล่อยที่ทำจากทรานซิสเตอร์ที่ทรงพลัง อย่างไรก็ตาม กระแสพื้นฐานของทรานซิสเตอร์กำลังสูงมีขนาดค่อนข้างใหญ่ และการส่งสัญญาณโดยไม่มีตัวทวนสัญญาณระดับกลางหมายถึงการบิดเบือนแบบไม่เชิงเส้นอย่างมาก

ในแอมพลิฟายเออร์นี้ ทรานซิสเตอร์แบบไบโพลาร์และทรานซิสเตอร์สนามแม่เหล็ก (VT8, VT9) สามารถใช้เป็นแอมพลิฟายเออร์กระแสไฟฟ้า "ระดับกลาง" ได้ วัตถุประสงค์ของน้ำตกนี้คือเพื่อลดภาระของน้ำตกก่อนหน้านี้ให้มากที่สุดเท่าที่จะเป็นไปได้ซึ่งมีความสามารถในการรับน้ำหนักไม่มาก การใช้ทรานซิสเตอร์สนามผลเป็น VT8, VT9 ช่วยลดการเรียงซ้อนบน VT5, VT6 ได้ค่อนข้างมากซึ่งจะลดระดับ THD เกือบ 2 เท่า

อย่างไรก็ตาม ประสิทธิภาพโดยรวมของแอมพลิฟายเออร์ก็ลดลงเช่นกัน - ที่แรงดันไฟฟ้าเท่ากัน แอมพลิฟายเออร์ที่มีทรานซิสเตอร์เอฟเฟกต์สนามจะผลิตพลังงานของสัญญาณที่ไม่ถูกบิดเบือนโดย Kipling (ข้อจำกัดของสัญญาณเอาท์พุตจากด้านบนและด้านล่าง) น้อยกว่าไบโพลาร์โดยสมบูรณ์ รุ่น

มันไม่ยุติธรรมเลยที่จะเงียบเกี่ยวกับความจริงที่ว่าแอมพลิฟายเออร์เหล่านี้ให้เสียงที่แตกต่างกันเล็กน้อยแม้ว่าอุปกรณ์จะไม่บันทึกสิ่งนี้ แต่แต่ละตัวเลือกก็ยังมีสีเสียงของตัวเอง ดังนั้นจึงขอแนะนำให้ใช้เวอร์ชันไบโพลาร์ทั้งหมดหรือมีฟิลด์ -เอฟเฟคทรานซิสเตอร์โง่ๆ - รสชาติและสี...

หลังจากพรีแอมป์ปัจจุบันโหลดลงบนตัวต้านทาน R22 (โหลดของสเตจนี้ไม่ได้ผูกติดกับสายสามัญหรือโหลด กล่าวคือ เป็นโหลดลอย ซึ่งช่วยให้กระแสที่ไหลผ่านสเตจนี้เปลี่ยนแปลงน้อยที่สุดและนำไปสู่ ลด THD เพิ่มเติม) และจัดส่งไปยังฐานของขั้นตอนสุดท้ายแล้ว

ในรูปลักษณ์นี้ จะใช้ทรานซิสเตอร์สองตัวขนานกัน อย่างไรก็ตาม จำนวนทรานซิสเตอร์เหล่านี้สามารถลดลงได้หากจำเป็นต้องสร้างแอมพลิฟายเออร์ที่มีกำลังสูงถึง 150 W และเพิ่มเป็นสามคู่หากจำเป็นต้องสร้างแอมพลิฟายเออร์ที่มีกำลัง 450 W

การเชื่อมต่อแบบขนานของเทอร์มินัลทรานซิสเตอร์ช่วยให้คุณได้รับพลังงานรวมมากขึ้น แต่คุณควรคำนึงถึงคุณสมบัติบางอย่างของโซลูชันนี้ ทรานซิสเตอร์ที่ต่อแบบขนานต้องไม่เพียงแต่เป็นชนิดเดียวกันเท่านั้น แต่ยังต้องเป็นของชุดอื่นด้วย เช่น ผลิตในกะการผลิตครั้งเดียวที่โรงงานผลิต

สิ่งนี้จะช่วยให้คุณสามารถกำจัดการเลือกทรานซิสเตอร์ตามพารามิเตอร์ได้เนื่องจากผู้ผลิตรับประกันการแพร่กระจายของพารามิเตอร์ระหว่างทรานซิสเตอร์ในชุดเดียวกันว่าจะน้อยกว่า 2% ซึ่งเป็นเรื่องจริง กล่าวอีกนัยหนึ่งควรซื้อทรานซิสเตอร์สำหรับขั้นตอนสุดท้ายในที่เดียวและตามปริมาณที่ต้องการทั้งหมดในคราวเดียว

คุณควรใส่ใจกับเครื่องหมายของทรานซิสเตอร์ด้วย - บนทรานซิสเตอร์จากโตชิบาจริง ๆ แล้วเครื่องหมายนั้นทำด้วยเลเซอร์เช่น คำจารึกมีสีเหลืองสดและมองเห็นได้ไม่มากนัก แบบอักษรของจารึกมีลักษณะเฉพาะบางประการคือมีการตัดตัวอักษรและตัวเลขบางตัว (รูปที่ 2)

และสุดท้าย - ในกรณีนี้ สัญลักษณ์ 547 และไอคอนวงรีที่อยู่ทางด้านซ้ายของตัวเลขเหล่านี้คือหมายเลขแบตช์ ดังนั้น ทรานซิสเตอร์ทั้งหมดที่เชื่อมต่อแบบขนานควรมีเครื่องหมายเหมือนกัน รวมถึงตัวเลขและเครื่องหมายเดียวกัน โดยวิธีการแทนที่จะเป็นวงรีสามารถเป็นตัวอักษรตัวเลขหรือตัวเลขที่มีตัวอักษรได้

การเลือกพารามิเตอร์ระหว่างทรานซิสเตอร์ของโครงสร้าง n-p-n และ p-n-p นั้นเป็นที่ต้องการ แต่ไม่บังคับเลย - ตามกฎแล้วการใช้อุปกรณ์คุณภาพสูงการแพร่กระจายดังกล่าวจะได้รับการชดเชยโดยการกระทำของการตอบรับเชิงลบ

รูปที่ 3 แสดงภาพวาดของแผงวงจรพิมพ์ของเครื่องขยายเสียง (มุมมองจากด้านราง ขนาดบอร์ด 127x88 มม.) รูปที่ 4 แสดงตำแหน่งของชิ้นส่วนและแผนภาพการเชื่อมต่อ (มุมมองจากด้านชิ้นส่วน)

ค่าของตัวต้านทาน R3, R6 ขึ้นอยู่กับแรงดันไฟฟ้าที่ใช้และสามารถอยู่ในช่วงตั้งแต่ 1.8 kOhm ถึง 3 kOhm ตัวเหนี่ยวนำ L1 พันบนแมนเดรลที่มีเส้นผ่านศูนย์กลาง 10 มม. และมีลวด 10 รอบที่มีเส้นผ่านศูนย์กลาง 1.2...1.3 มม.

กระแสนิ่งของสเตจสุดท้ายควรอยู่ในช่วง 30 ถึง 60 mA - การปรับทำได้โดยการปรับตัวต้านทาน R15 ไม่จำเป็นต้องยกให้สูงขึ้น - เมื่อแอมพลิฟายเออร์อุ่นเครื่อง อาจเกิดการกระตุ้นย่อยภายในเคส เช่น การกระตุ้นของเครื่องขยายเสียงที่ด้านบนของไซนัสอยด์ สิ่งนี้ไม่สามารถมองเห็นได้ด้วยหู แต่ทำให้เกิดความร้อนเพิ่มเติมในขั้นตอนสุดท้าย

กระแสไฟนิ่งถูกตั้งค่าไว้ที่ระดับต่ำสุดก่อนที่จะเปิดสวิตช์ครั้งแรก (แถบเลื่อนของตัวต้านทานที่ปรับแล้วจะอยู่ในตำแหน่งด้านบนตามแผนภาพ) หลังจากเปิดสวิตช์แล้ว กระแสไฟนิ่งที่ต้องการจะถูกตั้งค่าและหลังจากที่แอมพลิฟายเออร์อุ่นเครื่อง (ประมาณ 2...3 นาที) จะทำการปรับเปลี่ยนเพิ่มเติม - ทรานซิสเตอร์ TV5, VT6 จะถึงอุณหภูมิในการทำงานและอุณหภูมิจะไม่เพิ่มขึ้นอีกต่อไป

ทรานซิสเตอร์ของขั้นตอนสุดท้ายและขั้นตอนสุดท้ายจะติดอยู่กับแผงระบายความร้อนทั่วไปพร้อมกับทรานซิสเตอร์ชดเชยความร้อน VT7 ผ่านทางตัวเว้นวรรคนำความร้อน (ไมกา) สำหรับทรานซิสเตอร์ VT5, VT6 จำเป็นต้องติดตั้งแผ่นระบายความร้อนซึ่งสามารถทำจากแผ่นอลูมิเนียมที่มีความหนา 1...1.5 มม. และขนาด 20x40 มม. สำหรับทรานซิสเตอร์แต่ละตัว

แผงระบายความร้อนนี้สามารถติดตั้งบนทรานซิสเตอร์ทั้งสองตัวพร้อมกันได้ เช่น ทรานซิสเตอร์จะถูกยึดไว้ระหว่างแผ่นอะลูมิเนียมด้วยสกรู ซึ่งสอดเข้าไปในรูระหว่างทรานซิสเตอร์

การตรวจสอบเครื่องขยายเสียง LANZAR

พูดตามตรง ฉันรู้สึกประหลาดใจมากกับสำนวน SOUND AMPLIFIER ที่ได้รับความนิยมอย่างมาก เท่าที่โลกทัศน์ของฉันอนุญาต มีเพียงวัตถุเดียวเท่านั้นที่สามารถทำงานภายใต้เครื่องขยายเสียงได้ นั่นก็คือแตร ได้มีการขยายเสียงมานานหลายทศวรรษแล้ว นอกจากนี้แตรยังสามารถขยายเสียงได้ทั้งสองทิศทาง

ดังที่เห็นได้จากภาพถ่าย แตรไม่มีอะไรเหมือนกันกับอุปกรณ์อิเล็กทรอนิกส์ อย่างไรก็ตาม คำค้นหาสำหรับ POWER AMPLIFIER กำลังถูกแทนที่ด้วย SOUND AMPLIFIER มากขึ้นเรื่อยๆ และชื่อเต็มของอุปกรณ์นี้คือ AUDITORY FREQUENCY POWER AMPLIFIER ถูกป้อนเพียง 29 ครั้ง ต่อเดือนเทียบกับการค้นหา SOUND AMPLIFIER 67,000 ครั้ง
ฉันแค่อยากรู้ว่าสิ่งนี้เกี่ยวข้องกับอะไร... แต่นั่นเป็นเพียงบทนำและตอนนี้ก็เป็นเทพนิยาย:

แผนผังของเพาเวอร์แอมป์ LANZAR แสดงในรูปที่ 1 นี่เป็นวงจรสมมาตรเกือบมาตรฐานซึ่งทำให้สามารถลดการบิดเบือนแบบไม่เชิงเส้นได้อย่างจริงจังให้เหลือระดับที่ต่ำมาก
วงจรนี้เป็นที่รู้จักมานานแล้ว ย้อนกลับไปในช่วงทศวรรษที่ 80 Bolotnikov และ Ataev นำเสนอวงจรที่คล้ายกันบนฐานองค์ประกอบในประเทศในหนังสือ "วงจรเชิงปฏิบัติสำหรับการสร้างเสียงคุณภาพสูง"
อย่างไรก็ตาม การทำงานกับวงจรนี้ไม่ได้เริ่มต้นด้วยแอมพลิฟายเออร์นี้


ทุกอย่างเริ่มต้นด้วยวงจรแอมพลิฟายเออร์รถยนต์ PPI 4240 ซึ่งทำซ้ำได้สำเร็จ:

ต่อไปคือบทความ “Opening Amplifier -2” จาก Iron Shikhman (บทความนี้ถูกลบออกจากเว็บไซต์ของผู้เขียนแล้ว) มันเกี่ยวข้องกับวงจรของแอมพลิฟายเออร์รถยนต์ Lanzar RK1200C ซึ่งใช้วงจรสมมาตรเดียวกันเป็นแอมพลิฟายเออร์
เป็นที่แน่ชัดว่าการดูเพียงครั้งเดียวยังดีกว่าการฟังร้อยครั้ง ดังนั้นเมื่อเจาะลึกเข้าไปในแผ่นดิสก์ที่บันทึกไว้อายุร้อยปีของฉัน ฉันจึงพบบทความต้นฉบับและนำเสนอเป็นคำพูด:

การเปิดเครื่องขยายเสียง - 2

เอไอ ชิฮาตอฟ 2545

แนวทางใหม่ในการออกแบบแอมพลิฟายเออร์เกี่ยวข้องกับการสร้างกลุ่มผลิตภัณฑ์โดยใช้โซลูชันวงจร ส่วนประกอบและรูปแบบทั่วไปที่คล้ายคลึงกัน ในด้านหนึ่งช่วยลดต้นทุนการออกแบบและการผลิต และในทางกลับกัน ช่วยเพิ่มทางเลือกของอุปกรณ์เมื่อสร้างระบบเสียง
แอมพลิฟายเออร์ซีรีส์ Lanzar RACK รุ่นใหม่ได้รับการออกแบบโดยคำนึงถึงจิตวิญญาณของอุปกรณ์สตูดิโอแบบติดตั้งบนชั้นวาง แผงด้านหน้า ขนาด 12.2x2.3 นิ้ว (310x60 มม.) มีตัวควบคุม และแผงด้านหลังมีขั้วต่อทั้งหมด ข้อตกลงนี้ไม่เพียงปรับปรุงรูปลักษณ์ของระบบเท่านั้น แต่ยังช่วยลดความยุ่งยากในการทำงานอีกด้วย - สายเคเบิลไม่ขวางทาง ที่แผงด้านหน้า คุณสามารถติดแถบยึดและที่จับที่ให้มาด้วยได้ จากนั้นอุปกรณ์จะดูคล้ายสตูดิโอ ไฟส่องสว่างแบบวงแหวนของการควบคุมความไวจะช่วยเพิ่มความคล้ายคลึงเท่านั้น
เครื่องส่งคลื่นวิทยุอยู่ที่พื้นผิวด้านข้างของเครื่องขยายเสียง ซึ่งช่วยให้คุณวางอุปกรณ์หลายชิ้นไว้ในชั้นวางได้โดยไม่รบกวนการระบายความร้อน นี่คือความสะดวกสบายอย่างไม่ต้องสงสัยเมื่อสร้างระบบเสียงที่กว้างขวาง อย่างไรก็ตาม เมื่อติดตั้งในชั้นวางแบบปิด คุณต้องกังวลเกี่ยวกับการไหลเวียนของอากาศ - ติดตั้งพัดลมจ่ายและพัดลมดูดอากาศ เซ็นเซอร์อุณหภูมิ กล่าวโดยสรุป อุปกรณ์ระดับมืออาชีพต้องใช้แนวทางแบบมืออาชีพในทุกเรื่อง
กลุ่มผลิตภัณฑ์ประกอบด้วยแอมพลิฟายเออร์สองแชนเนลหกแชนเนลและสี่แชนเนลสองตัว ต่างกันเฉพาะกำลังเอาต์พุตและความยาวของตู้เท่านั้น

บล็อกไดอะแกรมของครอสโอเวอร์ของแอมพลิฟายเออร์ซีรีส์ Lanzar RK แสดงในรูปที่ 1 ไม่ได้ให้ไดอะแกรมโดยละเอียดเนื่องจากไม่มีต้นฉบับอยู่ในนั้นและไม่ใช่ยูนิตนี้ที่กำหนดคุณสมบัติหลักของแอมพลิฟายเออร์ โครงสร้างที่เหมือนกันหรือคล้ายกันนั้นใช้ในแอมพลิฟายเออร์ราคากลางสมัยใหม่ส่วนใหญ่ ช่วงของฟังก์ชันและคุณลักษณะได้รับการปรับให้เหมาะสมโดยคำนึงถึงปัจจัยหลายประการ:
ในด้านหนึ่ง ความสามารถในการครอสโอเวอร์ควรช่วยให้สามารถสร้างตัวเลือกระบบเสียงมาตรฐาน (ด้านหน้าและซับวูฟเฟอร์) ได้โดยไม่ต้องมีส่วนประกอบเพิ่มเติม ในทางกลับกัน การแนะนำฟังก์ชันครบชุดลงในครอสโอเวอร์ในตัวนั้นแทบไม่มีประโยชน์เลย: สิ่งนี้จะเพิ่มต้นทุนอย่างมาก แต่ในหลายกรณี จะยังคงไม่มีการอ้างสิทธิ์ สะดวกกว่าในการมอบหมายงานที่ซับซ้อนให้กับครอสโอเวอร์และอีควอไลเซอร์ภายนอกและปิดการใช้งานงานในตัว

การออกแบบใช้แอมพลิฟายเออร์ปฏิบัติการ KIA4558S คู่ เหล่านี้เป็นแอมพลิฟายเออร์ที่มีสัญญาณรบกวนต่ำและความผิดเพี้ยนต่ำซึ่งออกแบบโดยคำนึงถึงการใช้งาน "เสียง" เป็นหลัก ด้วยเหตุนี้ จึงมีการใช้กันอย่างแพร่หลายในสเตจปรีแอมป์และครอสโอเวอร์
ขั้นแรกคือแอมพลิฟายเออร์เชิงเส้นที่มีอัตราขยายแบบแปรผัน มันจับคู่แรงดันเอาต์พุตของแหล่งสัญญาณกับความไวของเพาเวอร์แอมป์เนื่องจากการได้รับของสเตจอื่นทั้งหมดจะเท่ากับความสามัคคี
ขั้นต่อไปคือการควบคุมการเพิ่มเสียงเบส ในแอมพลิฟายเออร์ของซีรีย์นี้จะช่วยให้คุณสามารถเพิ่มระดับสัญญาณที่ความถี่ 50 Hz คูณ 18 dB ในผลิตภัณฑ์จากบริษัทอื่น การเพิ่มขึ้นมักจะน้อยกว่า (6-12 dB) และความถี่ในการจูนอาจอยู่ในช่วง 35-60 Hz อย่างไรก็ตามตัวควบคุมดังกล่าวต้องการพลังงานสำรองที่ดีของแอมพลิฟายเออร์: การเพิ่มขึ้นของอัตราขยาย 3 dB สอดคล้องกับการเพิ่มกำลังเป็นสองเท่า 6 dB - การเพิ่มเป็นสี่เท่าและอื่น ๆ
สิ่งนี้ชวนให้นึกถึงตำนานเกี่ยวกับนักประดิษฐ์หมากรุกที่ขอราชาหนึ่งเม็ดสำหรับสี่เหลี่ยมแรกของกระดานและสำหรับแต่ละอันต่อมา - สองเท่าของธัญพืชก่อนหน้านี้ ราชาผู้ขี้เล่นไม่สามารถปฏิบัติตามคำสัญญาของเขาได้: ไม่มีธัญพืชในปริมาณเท่านี้ทั่วโลก... เราอยู่ในตำแหน่งที่ได้เปรียบมากกว่า: การเพิ่มระดับ 18 เดซิเบลจะเพิ่มพลังสัญญาณ "เท่านั้น" 64 เท่า ในกรณีของเรามีกำลังไฟ 300 W แต่ไม่ใช่ทุกแอมพลิฟายเออร์ที่สามารถอวดอ้างได้
จากนั้นสัญญาณสามารถป้อนเข้าเครื่องขยายกำลังได้โดยตรง หรือสามารถเลือกย่านความถี่ที่ต้องการได้โดยใช้ตัวกรอง ส่วนครอสโอเวอร์ประกอบด้วยตัวกรองอิสระสองตัว ตัวกรองความถี่ต่ำผ่านสามารถปรับได้ในช่วง 40-120 Hz และได้รับการออกแบบมาให้ทำงานกับซับวูฟเฟอร์โดยเฉพาะ ช่วงการปรับจูนของตัวกรองความถี่สูงผ่านกว้างขึ้นอย่างเห็นได้ชัด: จาก 150 Hz ถึง 1.5 kHz ในรูปแบบนี้ สามารถใช้เพื่อทำงานกับแถบความถี่กว้างด้านหน้าหรือสำหรับแถบความถี่ MF-HF ในระบบที่มีการขยายช่องสัญญาณ โดยวิธีการเลือกขีด จำกัด การปรับแต่งด้วยเหตุผล: ในช่วงตั้งแต่ 120 ถึง 150 Hz มี "รู" ซึ่งสามารถซ่อนเสียงสะท้อนของห้องโดยสารได้ เป็นที่น่าสังเกตว่าไม่ได้ปิดตัวเพิ่มเสียงเบสในโหมดใด ๆ การใช้คาสเคดนี้พร้อมกับฟิลเตอร์ความถี่สูงผ่านช่วยให้คุณปรับการตอบสนองความถี่ในพื้นที่เรโซแนนซ์ภายในได้ไม่แย่ไปกว่าการใช้อีควอไลเซอร์
น้ำตกสุดท้ายมีความลับ หน้าที่ของมันคือการกลับสัญญาณในช่องใดช่องหนึ่ง ซึ่งจะทำให้คุณสามารถใช้แอมพลิฟายเออร์ในการเชื่อมต่อบริดจ์ได้โดยไม่ต้องมีอุปกรณ์เพิ่มเติม
โครงสร้างครอสโอเวอร์ถูกสร้างขึ้นบนแผงวงจรพิมพ์แยกต่างหากซึ่งเชื่อมต่อกับบอร์ดเครื่องขยายเสียงโดยใช้ขั้วต่อ โซลูชันนี้ช่วยให้กลุ่มผลิตภัณฑ์แอมพลิฟายเออร์ทั้งหมดใช้ตัวเลือกครอสโอเวอร์เพียงสองตัวเท่านั้น: สองแชนเนลและสี่แชนเนล อย่างไรก็ตามอย่างหลังนั้นเป็นเพียงเวอร์ชัน "สองเท่า" ของสองช่องทางและส่วนของมันมีความเป็นอิสระอย่างสมบูรณ์ ข้อแตกต่างที่สำคัญคือเค้าโครงที่เปลี่ยนแปลงของแผงวงจรพิมพ์

เพาเวอร์แอมป์

เพาเวอร์แอมป์ Lanzar ผลิตขึ้นตามรูปแบบทั่วไปสำหรับการออกแบบที่ทันสมัย ​​ดังแสดงในรูปที่ 2 ด้วยรูปแบบเล็กน้อย สามารถพบได้ในแอมพลิฟายเออร์ส่วนใหญ่ที่มีราคากลางและต่ำกว่า ข้อแตกต่างเพียงอย่างเดียวคือประเภทของชิ้นส่วนที่ใช้ จำนวนทรานซิสเตอร์เอาท์พุต และแรงดันไฟฟ้า แผนภาพช่องสัญญาณด้านขวาของเครื่องขยายเสียงจะปรากฏขึ้น วงจรช่องสัญญาณด้านซ้ายจะเหมือนกันทุกประการ เฉพาะหมายเลขชิ้นส่วนเท่านั้นที่ขึ้นต้นด้วยหนึ่งแทนที่จะเป็นสอง

มีการติดตั้งตัวกรอง R242-R243-C241 ที่อินพุตของเครื่องขยายเสียง ซึ่งจะช่วยขจัดสัญญาณรบกวนความถี่วิทยุจากแหล่งจ่ายไฟ ตัวเก็บประจุ C240 ​​​​ไม่อนุญาตให้ส่วนประกอบ DC ของสัญญาณเข้าสู่อินพุตเพาเวอร์แอมป์ วงจรเหล่านี้ไม่ส่งผลต่อการตอบสนองความถี่ของเครื่องขยายเสียงในช่วงความถี่เสียง
เพื่อหลีกเลี่ยงการคลิกเมื่อเปิดและปิด อินพุตของเครื่องขยายเสียงจะเชื่อมต่อกับสายไฟทั่วไปที่มีสวิตช์ทรานซิสเตอร์ (อุปกรณ์นี้จะกล่าวถึงด้านล่างพร้อมกับแหล่งจ่ายไฟ) ตัวต้านทาน R11A ช่วยลดความเป็นไปได้ของการกระตุ้นตัวเองของเครื่องขยายเสียงเมื่อปิดอินพุต
วงจรแอมพลิฟายเออร์มีความสมมาตรอย่างสมบูรณ์จากอินพุตไปยังเอาต์พุต สเตจดิฟเฟอเรนเชียลสองเท่า (Q201-Q204) ที่อินพุตและสเตจบนทรานซิสเตอร์ Q205, Q206 ให้การขยายแรงดันไฟฟ้า ส่วนสเตจที่เหลือให้การขยายกระแส น้ำตกบนทรานซิสเตอร์ Q207 ทำให้กระแสนิ่งของแอมพลิฟายเออร์คงที่ เพื่อกำจัด "ความไม่สมดุล" ที่ความถี่สูง ตัวเก็บประจุ mylar C253 จะถูกข้ามไป
สเตจไดรเวอร์บนทรานซิสเตอร์ Q208, Q209 ซึ่งเหมาะสมกับสเตจเบื้องต้นทำงานในคลาส A โหลด "ลอย" เชื่อมต่อกับเอาต์พุต - ตัวต้านทาน R263 ซึ่งสัญญาณจะถูกลบออกเพื่อกระตุ้นทรานซิสเตอร์ของสเตจเอาท์พุต
ขั้นตอนเอาท์พุตใช้ทรานซิสเตอร์สองคู่ ซึ่งทำให้สามารถแยกกำลังไฟพิกัด 300 W และกำลังสูงสุดได้สูงสุด 600 W ตัวต้านทานในวงจรฐานและตัวปล่อยจะช่วยลดผลที่ตามมาจากการเปลี่ยนแปลงทางเทคโนโลยีในลักษณะของทรานซิสเตอร์ นอกจากนี้ ตัวต้านทานในวงจรอิมิตเตอร์ยังทำหน้าที่เป็นเซ็นเซอร์กระแสสำหรับระบบป้องกันการโอเวอร์โหลด มันถูกสร้างขึ้นบนทรานซิสเตอร์ Q230 และควบคุมกระแสของทรานซิสเตอร์แต่ละตัวในสี่ตัวในระยะเอาท์พุต เมื่อกระแสผ่านทรานซิสเตอร์แต่ละตัวเพิ่มขึ้นเป็น 6 A หรือกระแสของสเตจเอาต์พุตทั้งหมดเป็น 20 A ทรานซิสเตอร์จะเปิดขึ้นโดยออกคำสั่งไปยังวงจรบล็อกของตัวแปลงแรงดันไฟฟ้า
อัตราขยายถูกกำหนดโดยวงจรป้อนกลับเชิงลบ R280-R258-C250 และเท่ากับ 16 ตัวเก็บประจุแก้ไข C251, C252, C280 ช่วยให้มั่นใจได้ถึงเสถียรภาพของเครื่องขยายเสียงที่ครอบคลุมโดย OOS วงจร R249, C249 ที่เชื่อมต่อที่เอาต์พุตจะชดเชยการเพิ่มขึ้นของอิมพีแดนซ์โหลดที่ความถี่อัลตราโซนิกและยังป้องกันการกระตุ้นตัวเองด้วย ในวงจรเสียงของเครื่องขยายเสียงจะใช้ตัวเก็บประจุแบบไม่มีขั้วด้วยไฟฟ้าเพียงสองตัวเท่านั้น: C240 ​​​​ที่อินพุตและ C250 ในวงจร OOS เนื่องจากความจุขนาดใหญ่ จึงเป็นเรื่องยากมากที่จะแทนที่ด้วยตัวเก็บประจุประเภทอื่น

แหล่งจ่ายไฟ แหล่งจ่ายไฟกำลังสูงทำจากทรานซิสเตอร์เอฟเฟกต์สนาม คุณสมบัติพิเศษของแหล่งจ่ายไฟคือขั้นตอนเอาต์พุตแยกกันของตัวแปลงสำหรับจ่ายไฟให้กับเพาเวอร์แอมป์ของช่องสัญญาณซ้ายและขวา โครงสร้างนี้เป็นเรื่องปกติสำหรับเครื่องขยายสัญญาณกำลังสูง และทำให้สามารถลดการรบกวนชั่วคราวระหว่างช่องสัญญาณได้ สำหรับคอนเวอร์เตอร์แต่ละตัวจะมีตัวกรอง LC แยกต่างหากในวงจรจ่ายไฟ (รูปที่ 3) ไดโอด D501, D501A ปกป้องแอมพลิฟายเออร์จากการเปิดสวิตช์ผิดพลาดในขั้วที่ไม่ถูกต้อง

คอนเวอร์เตอร์แต่ละตัวใช้ทรานซิสเตอร์สนามแม่เหล็กสามคู่และหม้อแปลงที่พันบนวงแหวนเฟอร์ไรต์ แรงดันเอาต์พุตของคอนเวอร์เตอร์ได้รับการแก้ไขโดยชุดไดโอด D511, D512, D514, D515 และปรับให้เรียบโดยตัวเก็บประจุตัวกรองที่มีความจุ 3300 μF แรงดันเอาต์พุตของคอนเวอร์เตอร์ไม่เสถียร ดังนั้นกำลังของแอมพลิฟายเออร์จึงขึ้นอยู่กับแรงดันไฟฟ้าของเครือข่ายออนบอร์ด จากแรงดันลบของแรงดันขวาและแรงดันบวกของช่องด้านซ้าย ตัวปรับเสถียรภาพแบบพาราเมตริกจะสร้างแรงดันไฟฟ้าที่ +15 และ -15 โวลต์เพื่อจ่ายไฟให้กับครอสโอเวอร์และสเตจดิฟเฟอเรนเชียลของเพาเวอร์แอมป์
ออสซิลเลเตอร์หลักใช้ไมโครวงจร KIA494 (TL494) ทรานซิสเตอร์ Q503, Q504 เพิ่มเอาต์พุตของไมโครวงจรและเร่งการปิดทรานซิสเตอร์หลักของสเตจเอาต์พุต แรงดันไฟฟ้าจะจ่ายให้กับออสซิลเลเตอร์หลักอย่างต่อเนื่อง การสลับจะถูกควบคุมโดยตรงจากวงจรระยะไกลของแหล่งสัญญาณ โซลูชันนี้ทำให้การออกแบบง่ายขึ้น แต่เมื่อปิดเครื่อง แอมพลิฟายเออร์จะใช้กระแสไฟนิ่งเล็กน้อย (หลายมิลลิแอมป์)
อุปกรณ์ป้องกันถูกสร้างขึ้นบนชิป KIA358S ที่มีตัวเปรียบเทียบสองตัว แรงดันไฟฟ้าจะถูกจ่ายโดยตรงจากวงจรระยะไกลของแหล่งสัญญาณ ตัวต้านทาน R518-R519-R520 และเซ็นเซอร์อุณหภูมิจะสร้างสะพานซึ่งเป็นสัญญาณที่ป้อนไปยังหนึ่งในเครื่องเปรียบเทียบ สัญญาณจากเซ็นเซอร์โอเวอร์โหลดจะถูกส่งไปยังตัวเปรียบเทียบอื่นผ่านไดรเวอร์บนทรานซิสเตอร์ Q501
เมื่อแอมพลิฟายเออร์ร้อนเกินไป ระดับแรงดันไฟฟ้าสูงจะปรากฏขึ้นที่พิน 2 ของไมโครวงจร และระดับเดียวกันจะปรากฏที่พิน 8 เมื่อแอมพลิฟายเออร์โอเวอร์โหลด ในกรณีฉุกเฉินใด ๆ สัญญาณจากเอาต์พุตของตัวเปรียบเทียบผ่านวงจรไดโอด OR (D505, D506, R603) จะบล็อกการทำงานของออสซิลเลเตอร์หลักที่พิน 16 การทำงานจะกลับคืนมาหลังจากกำจัดสาเหตุของการโอเวอร์โหลดหรือการระบายความร้อนของแอมพลิฟายเออร์ด้านล่าง เกณฑ์การตอบสนองของเซ็นเซอร์อุณหภูมิ
ตัวบ่งชี้โอเวอร์โหลดได้รับการออกแบบในแบบดั้งเดิม: LED เชื่อมต่อระหว่างแหล่งจ่ายแรงดันไฟฟ้า +15 V และแรงดันไฟฟ้าเครือข่ายออนบอร์ด ในระหว่างการทำงานปกติ แรงดันไฟฟ้าจะจ่ายไปที่ LED ในขั้วย้อนกลับและจะไม่สว่าง เมื่อคอนเวอร์เตอร์ถูกบล็อก แรงดันไฟฟ้า +15 V จะหายไป ไฟ LED แสดงสถานะโอเวอร์โหลดจะเปิดระหว่างแหล่งจ่ายแรงดันไฟฟ้าออนบอร์ดและสายสามัญในทิศทางไปข้างหน้าและเริ่มเรืองแสง
ทรานซิสเตอร์ Q504, Q93, Q94 ใช้เพื่อบล็อกอินพุตของเพาเวอร์แอมป์ในระหว่างกระบวนการชั่วคราวเมื่อเปิดและปิด เมื่อเปิดเครื่องขยายเสียงตัวเก็บประจุ C514 จะถูกชาร์จอย่างช้าๆ ทรานซิสเตอร์ Q504 อยู่ในสถานะเปิดในขณะนี้ สัญญาณจากตัวสะสมของทรานซิสเตอร์นี้จะเปิดปุ่ม Q94,Q95 หลังจากชาร์จตัวเก็บประจุแล้ว ทรานซิสเตอร์ Q504 จะปิดลง และแรงดันไฟฟ้า -15 V จากเอาต์พุตของแหล่งจ่ายไฟจะบล็อกปุ่มได้อย่างน่าเชื่อถือ เมื่อปิดแอมพลิฟายเออร์ทรานซิสเตอร์ Q504 จะเปิดทันทีผ่านไดโอด D509 ตัวเก็บประจุจะคายประจุอย่างรวดเร็วและกระบวนการจะทำซ้ำในลำดับย้อนกลับ

ออกแบบ

แอมพลิฟายเออร์ติดตั้งอยู่บนแผงวงจรพิมพ์สองตัว หนึ่งในนั้นมีแอมพลิฟายเออร์และตัวแปลงแรงดันไฟฟ้าส่วนอีกอันมีองค์ประกอบครอสโอเวอร์และตัวบ่งชี้การเปิดและโอเวอร์โหลด (ไม่แสดงในแผนภาพ) บอร์ดทำจากไฟเบอร์กลาสคุณภาพสูงพร้อมการเคลือบป้องกันรางและติดตั้งในโครงอะลูมิเนียมรูปตัวยู ทรานซิสเตอร์อันทรงพลังของแอมพลิฟายเออร์และแหล่งจ่ายไฟถูกกดด้วยแผ่นอิเล็กโทรดที่ชั้นวางด้านข้างของเคส หม้อน้ำแบบมีโปรไฟล์ติดอยู่ที่ด้านนอกของด้านข้าง แผงด้านหน้าและด้านหลังของแอมพลิฟายเออร์ทำจากอลูมิเนียมโปรไฟล์ โครงสร้างทั้งหมดยึดด้วยสกรูเกลียวปล่อยพร้อมหัวหกเหลี่ยม จริงๆ แล้วนั่นคือทั้งหมด - ส่วนที่เหลือสามารถเห็นได้ในรูปถ่าย

ดังที่คุณเห็นจากบทความ แอมพลิฟายเออร์ LANZAR ดั้งเดิมนั้นไม่ได้แย่เลย แต่ฉันอยากให้มันดีกว่านี้...
แน่นอนว่าฉันค้นหาในฟอรั่ม Vegalab แต่ไม่พบการสนับสนุนมากนัก - มีเพียงคนเดียวเท่านั้นที่ตอบ บางทีมันอาจจะดีขึ้น - มีผู้เขียนร่วมไม่มากนัก โดยทั่วไปการอุทธรณ์นี้ถือได้ว่าเป็นวันเกิดของ Lanzar - ในขณะที่เขียนความคิดเห็นบอร์ดได้ถูกแกะสลักและบัดกรีแล้วเกือบทั้งหมด

Lanzar อายุสิบปีแล้ว...
หลังจากการทดลองหลายเดือน แอมพลิฟายเออร์รุ่นแรกที่เรียกว่า "LANZAR" ก็ถือกำเนิดขึ้น แม้ว่าแน่นอนว่าการเรียกมันว่า "PIPIAY" จะยุติธรรมกว่า - ทุกอย่างเริ่มต้นจากเขา อย่างไรก็ตามคำว่า LANZAR ฟังดูน่าฟังมากกว่ามาก
หากมีคนคิดว่าชื่อนี้เป็นความพยายามในการเล่นโดยใช้ชื่อแบรนด์อย่างกะทันหัน ฉันกล้ายืนยันกับเขาว่าในใจไม่มีอะไรแบบนั้น และเครื่องขยายเสียงก็อาจได้รับชื่อใดๆ ก็ได้อย่างแน่นอน อย่างไรก็ตาม LANAZR ได้กลายเป็น LANAZR เพื่อเป็นเกียรติแก่บริษัท LANZAR เนื่องจากอุปกรณ์ยานยนต์โดยเฉพาะนี้รวมอยู่ในรายชื่อเล็กๆ ของผู้ที่ได้รับความเคารพเป็นการส่วนตัวจากทีมงานที่ทำงานเกี่ยวกับการปรับแต่งแอมพลิฟายเออร์นี้อย่างละเอียด
แรงดันไฟฟ้าที่หลากหลายทำให้สามารถสร้างแอมพลิฟายเออร์ที่มีกำลังตั้งแต่ 50 ถึง 350 W และกำลังสูงถึง 300 W สำหรับกาแฟ UMZCH ความเพี้ยนแบบไม่เชิงเส้นจะต้องไม่เกิน 0.08% ตลอดช่วงเสียงทั้งหมด ซึ่งทำให้แอมพลิฟายเออร์สามารถจัดประเภทเป็น Hi-Fi ได้
รูปนี้แสดงลักษณะของเครื่องขยายเสียง
วงจรแอมพลิฟายเออร์มีความสมมาตรอย่างสมบูรณ์จากอินพุตไปยังเอาต์พุต คาสเคดดิฟเฟอเรนเชียลคู่ (VT1-VT4) ที่อินพุตและคาสเคดบนทรานซิสเตอร์ VT5, VT6 ให้การขยายแรงดันไฟฟ้า ส่วนคาสเคดที่เหลือให้การขยายกระแส น้ำตกบนทรานซิสเตอร์ VT7 ทำให้กระแสนิ่งของแอมพลิฟายเออร์คงที่ เพื่อกำจัด "ความไม่สมมาตร" ที่ความถี่สูง ตัวเก็บประจุ C12 จะข้ามไป
สเตจไดรเวอร์บนทรานซิสเตอร์ VT8, VT9 ซึ่งเหมาะสมกับสเตจเบื้องต้นทำงานในคลาส A โหลด "ลอย" เชื่อมต่อกับเอาต์พุต - ตัวต้านทาน R21 ซึ่งสัญญาณจะถูกลบออกเพื่อกระตุ้นทรานซิสเตอร์ของสเตจเอาท์พุต ขั้นตอนเอาท์พุตใช้ทรานซิสเตอร์สองคู่ซึ่งทำให้สามารถดึงพลังงานพิกัดออกมาได้มากถึง 300 W
ตัวต้านทานในวงจรฐานและตัวปล่อยจะช่วยลดผลกระทบของการเปลี่ยนแปลงทางเทคโนโลยีในลักษณะของทรานซิสเตอร์ซึ่งทำให้สามารถละทิ้งการเลือกทรานซิสเตอร์ตามพารามิเตอร์ได้
เราเตือนคุณว่าเมื่อใช้ทรานซิสเตอร์จากชุดเดียวกัน การแพร่กระจายของพารามิเตอร์ระหว่างทรานซิสเตอร์จะต้องไม่เกิน 2% - นี่คือข้อมูลของผู้ผลิต ในความเป็นจริง เป็นเรื่องยากมากที่พารามิเตอร์จะเกินโซนสามเปอร์เซ็นต์ แอมพลิฟายเออร์ใช้ทรานซิสเตอร์เทอร์มินัล "ฝ่ายเดียว" เท่านั้นซึ่งเมื่อใช้ร่วมกับตัวต้านทานสมดุลทำให้สามารถจัดตำแหน่งโหมดการทำงานของทรานซิสเตอร์ให้ตรงกันได้สูงสุด อย่างไรก็ตาม หากเครื่องขยายเสียงถูกสร้างขึ้นเพื่อคนที่คุณรัก การประกอบแท่นทดสอบที่ให้ไว้ท้ายบทความนี้จะไม่ไร้ประโยชน์


เกี่ยวกับวงจรนั้นยังคงต้องเพิ่มว่าโซลูชันวงจรดังกล่าวให้ข้อดีอีกอย่างหนึ่ง - ความสมมาตรที่สมบูรณ์จะกำจัดกระบวนการชั่วคราวในขั้นตอนสุดท้าย (!) เช่น ในขณะที่เปิดเครื่อง เอาต์พุตของแอมพลิฟายเออร์จะปราศจากลักษณะไฟกระชากของแอมพลิฟายเออร์แยกส่วนส่วนใหญ่


รูปที่ 1 - แผนผังของเครื่องขยายเสียง LANZAR เพิ่มขึ้น .


รูปที่ 2 - ลักษณะที่ปรากฏของแอมพลิฟายเออร์ LANZAR V1

รูปที่ 3 - ลักษณะที่ปรากฏของเครื่องขยายเสียง LANZAR MINI

แผนผังของเพาเวอร์แอมป์สเตจอันทรงพลัง 200 W 300 W 400 W UMZCH บนทรานซิสเตอร์คุณภาพสูง Hi-Fi UMZCH

ข้อมูลจำเพาะของเพาเวอร์แอมป์: ±50 โวลต์

390

ดังที่เห็นได้จากคุณลักษณะดังกล่าว แอมพลิฟายเออร์ Lanzar มีความหลากหลายมากและสามารถนำมาใช้กับเพาเวอร์แอมป์ใดๆ ที่ต้องการคุณลักษณะ UMZCH ที่ดีและกำลังเอาต์พุตสูงได้สำเร็จ
โหมดการทำงานได้รับการปรับเล็กน้อยซึ่งจำเป็นต้องติดตั้งหม้อน้ำบนทรานซิสเตอร์ VT5-VT6 วิธีดำเนินการดังแสดงในรูปที่ 3 อาจไม่จำเป็นต้องอธิบาย การเปลี่ยนแปลงนี้ช่วยลดระดับความผิดเพี้ยนลงอย่างมากเมื่อเทียบกับวงจรดั้งเดิม และทำให้แอมพลิฟายเออร์ควบคุมแรงดันไฟฟ้าที่จ่ายตามอำเภอใจน้อยลง
รูปที่ 4 แสดงภาพวาดตำแหน่งของชิ้นส่วนบนแผงวงจรพิมพ์และแผนภาพการเชื่อมต่อ


รูปที่ 4

แน่นอนคุณสามารถสรรเสริญแอมพลิฟายเออร์นี้ได้เป็นเวลานาน แต่อย่างใดการสรรเสริญตนเองก็ไม่ใช่เรื่องเล็กน้อย ดังนั้นเราจึงตัดสินใจดูบทวิจารณ์ของผู้ที่ได้ยินว่ามันทำงานอย่างไร ฉันไม่ต้องค้นหานาน - แอมพลิฟายเออร์นี้มีการพูดคุยกันในฟอรัมหัวแร้งมาเป็นเวลานาน ดังนั้นลองดูด้วยตัวคุณเอง:

แน่นอนว่ามีอันที่เป็นลบ แต่อันแรกมาจากแอมพลิฟายเออร์ที่ประกอบไม่ถูกต้องอันที่สองจากเวอร์ชันที่ยังไม่เสร็จพร้อมการกำหนดค่าภายในประเทศ...
หลายๆ คนมักถามว่าเครื่องขยายเสียงมีเสียงอย่างไร เราหวังว่าจะไม่ต้องเตือนคุณว่าไม่มีสหายตามรสนิยมและสี ดังนั้นเพื่อไม่ให้เราแสดงความคิดเห็นต่อคุณ เราจะไม่ตอบคำถามนี้

สังเกตสิ่งหนึ่ง - แอมพลิฟายเออร์ฟังดูดีจริงๆ เสียงไพเราะไม่รบกวน รายละเอียดดี มีแหล่งสัญญาณดี
เครื่องขยายเสียงพลังความถี่เสียง UM LANZAR ที่ใช้ทรานซิสเตอร์แบบไบโพลาร์อันทรงพลังจะช่วยให้คุณสามารถประกอบเครื่องขยายเสียงความถี่เสียงคุณภาพสูงได้ในช่วงเวลาอันสั้น
โครงสร้างบอร์ดขยายเสียงทำในเวอร์ชันโมโนโฟนิก อย่างไรก็ตาม ไม่มีอะไรขัดขวางคุณจากการซื้อแผงเครื่องขยายเสียง 2 แผงสำหรับการประกอบสเตอริโอ UMZCH หรือ 5 แผงสำหรับการประกอบเครื่องขยายเสียง 5.1 แม้ว่าแน่นอนว่ากำลังขับสูงจะดึงดูดซับวูฟเฟอร์มากกว่า แต่ก็เล่นได้ดีเกินไปสำหรับซับวูฟเฟอร์...
เมื่อพิจารณาว่าบอร์ดได้รับการบัดกรีและทดสอบแล้ว สิ่งที่คุณต้องทำคือติดทรานซิสเตอร์เข้ากับแผงระบายความร้อน จ่ายไฟ และปรับกระแสไฟนิ่งตามแรงดันไฟฟ้าที่จ่าย
ราคาที่ค่อนข้างต่ำของบอร์ดขยายกำลัง 350 W สำเร็จรูปจะทำให้คุณประหลาดใจ เพาเวอร์แอมป์ได้รับการพิสูจน์แล้วอย่างดีทั้งในด้านยานยนต์และอุปกรณ์เครื่องเขียน

ได้รับความนิยมเป็นพิเศษในกลุ่มดนตรีสมัครเล่นขนาดเล็กที่ไม่มีภาระทางการเงินจำนวนมากและช่วยให้คุณค่อยๆ เพิ่มพลัง - แอมพลิฟายเออร์คู่ + ระบบลำโพงคู่หนึ่ง หลังจากนั้นไม่นานก็มีแอมพลิฟายเออร์คู่หนึ่ง + ระบบลำโพงคู่หนึ่งอีกครั้งและไม่เพียง แต่กำลังเท่านั้น แต่ยังรวมถึงแรงดันเสียงด้วยซึ่งยังสร้างเอฟเฟกต์ของพลังเพิ่มเติมอีกด้วย ในเวลาต่อมา UM HOLTON 800 สำหรับซับวูฟเฟอร์และการถ่ายโอนแอมพลิฟายเออร์ไปยังลิงก์ความถี่กลาง HF ส่งผลให้ได้เสียงที่น่าพึงพอใจมากรวม 2 กิโลวัตต์ ซึ่งเพียงพอสำหรับหอประชุมใดๆ...
แหล่งจ่ายไฟ ±70 V - 3.3 kOhm...3.9 kOhm
แหล่งจ่ายไฟ ±60 V - 2.7 กิโลโอห์ม...3.3 กิโลโอห์ม
แหล่งจ่ายไฟ ±50 V - 2.2 กิโลโอห์ม...2.7 กิโลโอห์ม
แหล่งจ่ายไฟ ±40 V - 1.5 kOhm...2.2 kOhm
แหล่งจ่ายไฟ ±30 V - 1.0 kOhm...1.5 kOhm

แหล่งจ่ายไฟ ±20 V - เปลี่ยนเครื่องขยายเสียง

แน่นอนตัวต้านทานทั้งหมดคือ 1 W ซีเนอร์ไดโอดที่ 15V ควรเป็น 1.3 W

เกี่ยวกับการทำความร้อน VT5, V6 - ในกรณีนี้คุณสามารถเพิ่มหม้อน้ำหรือเพิ่มตัวต้านทานตัวปล่อยจาก 10 เป็น 20 โอห์ม
เกี่ยวกับ LANZAR ตัวเก็บประจุกรองพลังงานเครื่องขยายเสียง:
ด้วยกำลังหม้อแปลง 0.4...0.6 ของกำลังของแอมพลิฟายเออร์ที่แขน 22000...33000 µF ความจุในแหล่งจ่ายไฟ UA (ซึ่งถูกลืมด้วยเหตุผลบางประการ) ควรเพิ่มเป็น 1,000 µF
ด้วยกำลังหม้อแปลง 0.6...0.8 ของกำลังเครื่องขยายเสียงในแขน 15000...22000 µF ความจุไฟฟ้าในแหล่งจ่ายไฟคือ 470...1000 µF
ด้วยกำลังหม้อแปลง 0.8...1 ของกำลังเครื่องขยายเสียงในแขน 10,000...15000 µF ความจุไฟฟ้าในแหล่งจ่ายไฟคือ 470 µF

ชื่อที่ระบุนั้นเพียงพอสำหรับการสร้างชิ้นส่วนดนตรีคุณภาพสูง
เนื่องจากแอมพลิฟายเออร์นี้ค่อนข้างได้รับความนิยมและมีคำถามเกี่ยวกับการทำด้วยตัวเองบ่อยครั้งจึงมีการเขียนบทความต่อไปนี้:
เครื่องขยายเสียงทรานซิสเตอร์ พื้นฐานของการออกแบบวงจร
เครื่องขยายเสียงทรานซิสเตอร์ การสร้างเครื่องขยายเสียงแบบบาลานซ์
การเปลี่ยนแปลงการปรับแต่ง Lanzar และการออกแบบวงจร
การตั้งค่าเพาเวอร์แอมป์ LANZAR
การเพิ่มความน่าเชื่อถือของเพาเวอร์แอมป์โดยใช้ตัวอย่างของแอมพลิฟายเออร์ LANZAR
บทความสุดท้ายใช้ผลลัพธ์ของการวัดพารามิเตอร์โดยใช้เครื่องจำลอง MICROCAP-8 ค่อนข้างเข้มข้น
วิธีใช้โปรแกรมนี้มีการอธิบายโดยละเอียดในบทความไตรภาค:
แอมป์วิโชค.

ของเด็ก

แอมป์วิโชค.
แอมพลิฟายเออร์ให้เสียงดีมาก ค่าแดมปิ้งแฟคเตอร์สูงแสดงถึงระดับที่แตกต่างอย่างสิ้นเชิงของการสร้างความถี่ต่ำ และอัตราการสลูว์สูงก็สร้างงานได้อย่างดีเยี่ยมแม้แต่เสียงที่เล็กที่สุดในช่วงเสียงสูงและเสียงกลาง
คุณสามารถพูดคุยเกี่ยวกับความเพลิดเพลินของเสียงได้มากมาย แต่ข้อได้เปรียบหลักของแอมพลิฟายเออร์นี้คือไม่ได้เพิ่มสีใด ๆ ให้กับเสียง - มันเป็นกลางในเรื่องนี้และจะทำซ้ำและขยายสัญญาณจากแหล่งกำเนิดเสียงเท่านั้น
หลายคนที่ได้ยินเสียงของแอมพลิฟายเออร์นี้ (ประกอบตามวงจรนี้) ได้ให้คะแนนเสียงเป็นแอมพลิฟายเออร์ภายในบ้านสำหรับลำโพงคุณภาพสูงในระดับสูงสุด และความทนทานในสภาวะ *ใกล้เคียงกับปฏิบัติการทางทหาร* ทำให้มีโอกาสใช้อย่างมืออาชีพ สำหรับการให้คะแนนกิจกรรมกลางแจ้งต่างๆ รวมถึงในห้องโถง
เพื่อการเปรียบเทียบแบบง่ายๆ ผมจะยกตัวอย่างที่เกี่ยวข้องกับนักวิทยุสมัครเล่นมากที่สุด รวมถึงผู้ที่ *มีประสบการณ์ด้านเสียงดีมาก่อน*
ในเพลงประกอบภาพยนตร์เรื่อง Gregorian-Moment of Peace คณะนักร้องประสานเสียงของพระภิกษุฟังดูสมจริงมากจนเสียงดูเหมือนจะผ่านไปได้ และเสียงร้องของผู้หญิงก็ฟังราวกับว่านักร้องยืนอยู่ตรงหน้าผู้ฟัง
เมื่อใช้ลำโพงที่ผ่านการทดสอบตามกาลเวลา เช่น 35ac012 และรุ่นอื่นๆ ที่คล้ายคลึงกัน ลำโพงจะได้รับชีวิตใหม่และเสียงที่ชัดเจนแม้ในระดับเสียงสูงสุด
เช่น สำหรับผู้ชื่นชอบเพลงดัง เมื่อฟังเพลง Korn ft. สกริลเล็กซ์ - ลุกขึ้นมา
ผู้บรรยายสามารถเล่นทุกช่วงเวลาที่ยากลำบากได้อย่างมั่นใจและไม่ผิดเพี้ยนอย่างเห็นได้ชัด
ตรงกันข้ามกับแอมพลิฟายเออร์นี้ เราใช้แอมพลิฟายเออร์ที่ใช้ TDA7294 ซึ่งมีกำลังน้อยกว่า 70 W ต่อ 1 ช่องสัญญาณ ซึ่งสามารถโอเวอร์โหลด 35ac012 ได้ เพื่อให้ได้ยินได้ชัดเจนว่าขดลวดวูฟเฟอร์กระทบกับแกนอย่างไร ซึ่งเต็มไปด้วยความเสียหายต่อลำโพงและเป็นผลให้เกิดการสูญเสีย
ไม่สามารถพูดสิ่งเดียวกันนี้เกี่ยวกับแอมพลิฟายเออร์ *LANZAR* ได้ แม้ว่าจะจ่ายไฟให้กับลำโพงเหล่านี้ประมาณ 150W แต่ลำโพงก็ยังทำงานได้อย่างสมบูรณ์แบบ และวูฟเฟอร์ได้รับการควบคุมอย่างดีจนไม่มีเสียงภายนอกเลย
ในการประพันธ์ดนตรี Evanescence - สิ่งที่คุณต้องการ
ฉากนี้ซับซ้อนมากจนคุณได้ยินเสียงไม้กลองตีกัน และในเพลง Evanescence - Lithium Official Music Video
ส่วนที่กระโดดจะถูกแทนที่ด้วยกีตาร์ไฟฟ้า เพื่อที่เส้นผมบนศีรษะของคุณจะเริ่มขยับ เนื่องจากเสียงไม่มี *ความยาว* และการเปลี่ยนอย่างรวดเร็วจะถูกรับรู้ราวกับว่ารูปแบบที่เจ็บปวดของ 1 กำลังกะพริบเข้ามา ตรงหน้าคุณในชั่วขณะหนึ่ง และคุณจะดำดิ่งสู่โลกใหม่ อย่าลืมเกี่ยวกับเสียงร้องซึ่งตลอดการเรียบเรียงทั้งหมดทำให้เกิดการเปลี่ยนแปลงเหล่านี้โดยให้ความสามัคคี
ในการแต่งเพลง Nightwish - Nemo
เสียงกลองดังเหมือนเสียงปืน ชัดเจนและไม่ดัง และเสียงฟ้าร้องที่จุดเริ่มต้นขององค์ประกอบก็ทำให้คุณมองไปรอบๆ
ในการเรียบเรียงเพลง Armin van Buuren ft. ชารอน เดน อาเดล - เข้าและออกจากความรัก
เราดำดิ่งลงไปในโลกแห่งเสียงที่แทรกซึมผ่านเราอีกครั้ง ทำให้เรารู้สึกถึงการมีอยู่ (และไม่มีอีควอไลเซอร์หรือการขยายเสียงสเตอริโอเพิ่มเติม)
ในเพลง Johnny Cash Hurt
เราดำดิ่งลงไปในโลกแห่งเสียงที่กลมกลืนกันอีกครั้งและเสียงร้องและเสียงกีตาร์ก็ชัดเจนจนแม้แต่จังหวะการแสดงที่เพิ่มขึ้นก็ยังรับรู้ราวกับว่าเรากำลังนั่งอยู่หลังพวงมาลัยของรถที่ทรงพลังและเหยียบคันเร่งลงไปที่พื้น ขณะที่ไม่ปล่อยแต่กดดันหนักขึ้นเรื่อยๆ
ด้วยแหล่งสัญญาณเสียงที่ดีและอะคูสติกที่ดี แอมพลิฟายเออร์ *จึงไม่รบกวนคุณ* เลย แม้ในระดับเสียงสูงสุด
ครั้งหนึ่งเพื่อนมาเยี่ยมฉันและเขาอยากฟังว่าแอมพลิฟายเออร์นี้มีความสามารถอะไร โดยใส่แทร็กในรูปแบบ AAC Eagles - Hotel California เขาเร่งเสียงให้ดังที่สุด ในขณะที่เครื่องดนตรีเริ่มหล่นจากโต๊ะ หน้าอกของเขา รู้สึกเหมือนถูกชกหมัดอย่างดี กระจกกระทบผนัง และเราค่อนข้างสบายใจในการฟังเพลง ในขณะที่ห้องมีขนาด 14.5 ตร.ม. เพดานสูง 2.4 ม.
เราติดตั้ง ed_solo-age_of_dub แล้ว กระจกประตูสองบานแตก ได้ยินเสียงไปทั้งตัว แต่หัวไม่เจ็บ

บอร์ดบนพื้นฐานของวิดีโอที่สร้างขึ้นในรูปแบบ LAY-5

หากคุณประกอบเครื่องขยายสัญญาณ LANZAR สองตัว จะสามารถบริดจ์ได้หรือไม่
แน่นอนคุณสามารถ แต่ก่อนอื่นมีบทกวีเล็กน้อย:
สำหรับแอมพลิฟายเออร์ทั่วไป กำลังเอาท์พุตจะขึ้นอยู่กับแรงดันไฟจ่ายและความต้านทานโหลด เนื่องจากเราทราบความต้านทานโหลดและเรามีแหล่งจ่ายไฟอยู่แล้ว จึงต้องดูว่าต้องใช้ทรานซิสเตอร์เอาท์พุตกี่คู่
ตามทฤษฎี กำลังเอาต์พุตทั้งหมดของแรงดันไฟฟ้ากระแสสลับคือผลรวมของกำลังที่จ่ายโดยสเตจเอาท์พุตซึ่งประกอบด้วยทรานซิสเตอร์สองตัว - หนึ่ง n-p-n, p-n-p ตัวที่สอง ดังนั้นทรานซิสเตอร์แต่ละตัวจึงถูกโหลดด้วยกำลังไฟฟ้าทั้งหมดครึ่งหนึ่ง สำหรับคู่หวาน 2SA1943 และ 2SC5200 พลังงานความร้อนคือ 150 W ดังนั้นจากข้อสรุปข้างต้นจึงสามารถลบ 300 W ออกจากเอาต์พุตหนึ่งคู่ได้
แต่การปฏิบัติแสดงให้เห็นว่าในโหมดนี้คริสตัลไม่มีเวลาถ่ายเทความร้อนไปยังหม้อน้ำและรับประกันการสลายความร้อนเนื่องจากทรานซิสเตอร์จะต้องได้รับการหุ้มฉนวนและตัวเว้นวรรคฉนวนไม่ว่าจะบางแค่ไหนก็ยังเพิ่มความต้านทานความร้อนได้ และพื้นผิวของหม้อน้ำไม่น่าจะเหมาะกับใครที่ขัดละเอียดระดับไมครอน...
ดังนั้นสำหรับการใช้งานปกติเพื่อความน่าเชื่อถือตามปกติผู้คนจำนวนมากจึงใช้สูตรที่แตกต่างกันเล็กน้อยในการคำนวณจำนวนทรานซิสเตอร์เอาต์พุตที่ต้องการ - กำลังขับของเครื่องขยายเสียงไม่ควรเกินกำลังความร้อนของทรานซิสเตอร์ตัวเดียวและไม่ใช่กำลังรวมของ คู่ กล่าวอีกนัยหนึ่งหากทรานซิสเตอร์แต่ละตัวในระยะเอาต์พุตสามารถกระจายได้ 150 W กำลังเอาต์พุตของเครื่องขยายเสียงไม่ควรเกิน 150 W หากมีทรานซิสเตอร์เอาต์พุตสองคู่กำลังเอาต์พุตไม่ควรเกิน 300 W ถ้าสาม - 450 ถ้าสี่ - 600

ทีนี้คำถามก็คือ - หากแอมพลิฟายเออร์ทั่วไปสามารถเอาต์พุต 300W และเราเชื่อมต่อแอมพลิฟายเออร์ดังกล่าวสองตัวเข้ากับบริดจ์ จะเกิดอะไรขึ้น?
ใช่แล้ว กำลังเอาท์พุตจะเพิ่มขึ้นประมาณสองเท่า แต่พลังงานความร้อนที่ทรานซิสเตอร์กระจายไปจะเพิ่มขึ้น 4 เท่า...
ปรากฎว่าในการสร้างวงจรบริดจ์คุณไม่จำเป็นต้องมีเอาต์พุต 2 คู่อีกต่อไป แต่ต้องใช้ 4 คู่ในแต่ละครึ่งหนึ่งของแอมพลิฟายเออร์บริดจ์
จากนั้นเราก็ถามตัวเองด้วยคำถาม - จำเป็นต้องขับทรานซิสเตอร์ราคาแพง 8 คู่เพื่อให้ได้ 600 W หรือไม่ถ้าคุณสามารถทำได้ด้วยสี่คู่เพียงแค่เพิ่มแรงดันไฟฟ้า?

แน่นอนว่ามันเป็นธุรกิจของเจ้าของ....
บอร์ดพิมพ์หลายตัวเลือกสำหรับแอมพลิฟายเออร์นี้จะไม่ฟุ่มเฟือย นอกจากนี้ยังมีเวอร์ชันดั้งเดิมและบางเวอร์ชันนำมาจากอินเทอร์เน็ต ดังนั้นจึงควรตรวจสอบบอร์ดอีกครั้งจะดีกว่า - จะช่วยให้คุณได้ฝึกฝนจิตใจและปัญหาน้อยลงเมื่อปรับเวอร์ชันที่ประกอบขึ้น ตัวเลือกบางตัวได้รับการแก้ไขแล้ว ดังนั้นอาจไม่มีข้อผิดพลาดใดๆ หรืออาจมีบางอย่างหลุดรอดมาได้...
อีกหนึ่งคำถามที่ยังไม่มีคำตอบ - การประกอบเครื่องขยายสัญญาณ LANZAR บนฐานองค์ประกอบภายในประเทศ.
แน่นอนฉันเข้าใจว่าปูอัดไม่ได้ทำจากปู แต่มาจากปลา ลานซาร์ก็เช่นกัน ความจริงก็คือในความพยายามที่จะประกอบทรานซิสเตอร์ในประเทศนั้นจะใช้ทรานซิสเตอร์ที่ได้รับความนิยมมากที่สุด - KT815, KT814, KT816, KT817, KT818, KT819 ทรานซิสเตอร์เหล่านี้มีเกนที่ต่ำกว่าและความถี่เกนที่เป็นเอกภาพ ดังนั้นคุณจะไม่ได้ยินเสียงของ Lanzarov แต่มีทางเลือกอื่นเสมอ ครั้งหนึ่ง Bolotnikov และ Ataev เสนอสิ่งที่คล้ายกันในการออกแบบวงจร ซึ่งฟังดูค่อนข้างดี:

คุณสามารถดูรายละเอียดเพิ่มเติมเกี่ยวกับปริมาณพลังงานที่ต้องใช้แหล่งจ่ายไฟสำหรับเพาเวอร์แอมป์ได้ในวิดีโอด้านล่าง มีการใช้แอมพลิฟายเออร์ STONECOLD เป็นตัวอย่าง แต่การวัดนี้ทำให้ชัดเจนว่ากำลังของหม้อแปลงเครือข่ายอาจน้อยกว่ากำลังของแอมพลิฟายเออร์ประมาณ 30%

ในตอนท้ายของบทความ ฉันอยากจะทราบว่าแอมพลิฟายเออร์นี้ต้องใช้แหล่งจ่ายไฟแบบ BIPOLARY เนื่องจากแรงดันเอาต์พุตเกิดขึ้นจากด้านบวกของแหล่งจ่ายไฟและด้านลบ แผนภาพของแหล่งจ่ายไฟดังกล่าวแสดงอยู่ด้านล่าง:

คุณสามารถสรุปเกี่ยวกับกำลังโดยรวมของหม้อแปลงได้โดยดูวิดีโอด้านบน แต่ฉันจะอธิบายสั้น ๆ เกี่ยวกับรายละเอียดอื่น ๆ
ขดลวดทุติยภูมิจะต้องพันด้วยลวดที่มีหน้าตัดที่ออกแบบมาสำหรับกำลังโดยรวมของหม้อแปลงบวกกับการปรับรูปร่างของแกนด้วย
ตัวอย่างเช่น เรามีสองช่องสัญญาณ ช่องละ 150 W ดังนั้นกำลังโดยรวมของหม้อแปลงจะต้องมีอย่างน้อย 2/3 ของกำลังของเครื่องขยายเสียง กล่าวคือ ด้วยกำลังขยาย 300 W กำลังหม้อแปลงต้องมีอย่างน้อย 200 W ด้วยแหล่งจ่ายไฟ ±40 V ในโหลด 4 โอห์ม แอมพลิฟายเออร์จะพัฒนาประมาณ 160 W ต่อช่องสัญญาณ ดังนั้นกระแสที่ไหลผ่านสายไฟคือ 200 W / 40 V = 5 A
หากหม้อแปลงมีแกนรูปตัว W แรงดันไฟฟ้าในสายไฟไม่ควรเกิน 2.5 A ต่อตารางมม. ของหน้าตัด - วิธีนี้จะทำให้ความร้อนของสายไฟน้อยลงและแรงดันไฟฟ้าตกก็น้อยลง หากแกนเป็นวงแหวน แรงดันไฟฟ้าจะเพิ่มขึ้นเป็น 3...3.5 A ต่อพื้นที่หน้าตัดของสายไฟ 1 ตารางมม.
ตามตัวอย่างของเราข้างต้น ขดลวดทุติยภูมิจะต้องพันด้วยสายไฟสองเส้นและจุดเริ่มต้นของขดลวดหนึ่งเชื่อมต่อกับปลายของขดลวดที่สอง (จุดเชื่อมต่อจะถูกทำเครื่องหมายด้วยสีแดง) เส้นผ่านศูนย์กลางของเส้นลวดคือ D = 2 x √S/π
ที่แรงดันไฟฟ้า 2.5 A เราจะได้เส้นผ่านศูนย์กลาง 1.6 มม. ที่แรงดันไฟฟ้า 3.5 A เราจะได้เส้นผ่านศูนย์กลาง 1.3 มม.
ไดโอดบริดจ์ VD1-VD4 ไม่เพียงแต่จะต้องทนต่อกระแสผลลัพธ์ที่ 5 A อย่างสงบเท่านั้น แต่ยังต้องทนต่อกระแสที่เกิดขึ้นในขณะที่เปิดเครื่องเมื่อจำเป็นต้องชาร์จตัวเก็บประจุตัวกรองพลังงาน C3 และ C4 และยิ่งสูงเท่าไร แรงดันไฟฟ้า ยิ่งความจุมากขึ้น ค่าของกระแสไฟฟ้าเริ่มต้นก็จะยิ่งสูงขึ้น ดังนั้นตัวอย่างของเราจะต้องมีไดโอดอย่างน้อย 15 แอมแปร์ และในกรณีของการเพิ่มแรงดันไฟฟ้าและใช้แอมพลิฟายเออร์ที่มีทรานซิสเตอร์สองคู่ในขั้นตอนสุดท้าย จำเป็นต้องใช้ไดโอด 30-40 แอมแปร์หรือระบบซอฟต์สตาร์ท
ความจุของตัวเก็บประจุ C3 และ C4 ตามการออกแบบวงจรของสหภาพโซเวียตคือ 1,000 μF สำหรับทุก ๆ 50 W ของกำลังขยาย ในตัวอย่างของเรา กำลังเอาต์พุตทั้งหมดคือ 300 W ซึ่งเท่ากับ 6 คูณ 50 W ดังนั้นความจุของตัวเก็บประจุกรองกำลังควรเป็น 6,000 uF ต่อแขน แต่ 6000 ไม่ใช่ค่าปกติ เราจึงปัดเศษขึ้นเป็นค่าทั่วไปแล้วได้ 6800 µF
พูดตามตรง ตัวเก็บประจุดังกล่าวไม่ได้เจอบ่อยนัก ดังนั้นเราจึงใส่ตัวเก็บประจุ 3 ตัวที่ 2200 μF ในแต่ละแขนและรับ 6600 μF ซึ่งค่อนข้างยอมรับได้ ปัญหานี้สามารถแก้ไขได้ง่ายกว่าเล็กน้อย - ใช้ตัวเก็บประจุหนึ่งตัวต่อ 10,000 μF

กำลังรวบรวม LANZAR

การถามคำถามเดียวกันซ้ำๆ ในทุกหน้าของการสนทนาเกี่ยวกับแอมพลิฟายเออร์นี้ทำให้ฉันต้องเขียนภาพร่างสั้นๆ นี้ ทุกสิ่งที่เขียนด้านล่างนี้เป็นความคิดของฉันเกี่ยวกับสิ่งที่คุณจำเป็นต้องรู้ ผู้เริ่มต้นถึงนักวิทยุสมัครเล่นที่ตัดสินใจสร้างแอมพลิฟายเออร์นี้ และไม่ได้เสแสร้งว่าเป็นความจริงที่สมบูรณ์

สมมติว่าคุณกำลังมองหาวงจรขยายทรานซิสเตอร์ที่ดี วงจรเช่น “UM Zueva”, “VP”, “Natalie” และอื่นๆ ดูซับซ้อนสำหรับคุณ หรือคุณมีประสบการณ์เพียงเล็กน้อยในการประกอบวงจรเหล่านี้ แต่คุณต้องการเสียงที่ดี แล้วคุณก็จะพบสิ่งที่คุณกำลังมองหา! Lanzar เป็นแอมพลิฟายเออร์ที่สร้างขึ้นตามวงจรสมมาตรแบบคลาสสิก โดยมีสเตจเอาต์พุตทำงาน คลาสเอบีและมีเสียงที่ค่อนข้างดีโดยไม่มีการตั้งค่าที่ซับซ้อนและส่วนประกอบที่หายาก

วงจรเครื่องขยายเสียง:

ฉันพบว่าจำเป็นต้องทำการเปลี่ยนแปลงเล็กน้อยกับวงจรดั้งเดิม: อัตราขยายเพิ่มขึ้นเล็กน้อย - มากถึง 28 เท่า (เปลี่ยน R14) ค่าของตัวกรองอินพุต R1, R2 ก็เปลี่ยนไปเช่นเดียวกับตาม คำแนะนำ อาจเป็นฉันอาจเป็นลีโออัตราตัวต้านทานของตัวแบ่งฐานของทรานซิสเตอร์รักษาเสถียรภาพความร้อน (R15, R15’) เพื่อการปรับกระแสนิ่งที่ราบรื่นยิ่งขึ้น การเปลี่ยนแปลงไม่สำคัญ หมายเลขขององค์ประกอบได้รับการเก็บรักษาไว้

กำลังขยายเสียง

แหล่งจ่ายไฟของเครื่องขยายเสียง- ลิงค์ที่แพงที่สุดในนั้น ดังนั้นคุณควรเริ่มด้วยลิงค์นั้น ด้านล่างนี้เป็นคำสองสามคำเกี่ยวกับ IP

ขึ้นอยู่กับความต้านทานโหลดและกำลังเอาต์พุตที่ต้องการ แรงดันไฟฟ้าที่ต้องการจะถูกเลือก (ตารางที่ 1) ตารางนี้นำมาจากไซต์ต้นทาง (interlavka.narod.ru) อย่างไรก็ตามส่วนตัวฉันเอง อย่างเร่งด่วน ฉันไม่แนะนำให้ใช้งานแอมพลิฟายเออร์นี้ที่กำลังเกิน 200-220 วัตต์

จดจำ!นี่ไม่ใช่คอมพิวเตอร์ ไม่จำเป็นต้องระบายความร้อนเป็นพิเศษ การออกแบบไม่ควรทำงานเกินขีดความสามารถ จากนั้นคุณจะได้รับแอมพลิฟายเออร์ที่เชื่อถือได้ซึ่งใช้งานได้นานหลายปีและทำให้คุณพึงพอใจกับเสียง เราตัดสินใจที่จะสร้างอุปกรณ์คุณภาพสูง ไม่ใช่ช่อดอกไม้สำหรับปีใหม่ ดังนั้นให้ "เครื่องคั้น" ทุกประเภทเข้าไปในป่า

สำหรับแรงดันไฟฟ้าที่จ่ายต่ำกว่า ±45 V/8 Ohm และ ±35 V/4 Ohm สามารถละเว้นทรานซิสเตอร์เอาท์พุตคู่ที่สอง (VT12, VT13) ได้! ที่แรงดันไฟฟ้าดังกล่าวเราจะได้กำลังขับประมาณ 100 W ซึ่งเกินพอสำหรับบ้าน ฉันทราบว่าหากคุณติดตั้ง 2 คู่ที่แรงดันไฟฟ้าดังกล่าว กำลังขับจะเพิ่มขึ้นในปริมาณที่ไม่มีนัยสำคัญมาก ตามลำดับ 3-5 W แต่ถ้า “คางคกไม่รัดคอ” ก็ติดตั้งได้ 2 คู่เพื่อเพิ่มความน่าเชื่อถือ

กำลังหม้อแปลงไฟฟ้าสามารถคำนวณได้โดยใช้โปรแกรม "พาวเวอร์ซัพ"- การคำนวณขึ้นอยู่กับข้อเท็จจริงที่ว่าประสิทธิภาพโดยประมาณของแอมพลิฟายเออร์คือ 50-55% ซึ่งหมายความว่ากำลังของหม้อแปลงเท่ากับ: Ptrans=(มุ่ย*Nช่อง*100%)/ประสิทธิภาพใช้ได้เฉพาะในกรณีที่คุณต้องการฟังคลื่นไซน์เป็นเวลานาน สัญญาณดนตรีที่แท้จริงนั้นต่างจากคลื่นไซน์ตรงที่มีอัตราส่วนระหว่างค่าสูงสุดต่อค่าเฉลี่ยที่น้อยกว่ามาก ดังนั้นจึงไม่มีประโยชน์ที่จะเสียเงินไปกับกำลังของหม้อแปลงเพิ่มเติมที่จะไม่มีวันถูกนำมาใช้อีกต่อไป

ในการคำนวณ ฉันแนะนำให้เลือกปัจจัยสูงสุดที่ "หนักที่สุด" (8 dB) เพื่อให้แหล่งจ่ายไฟของคุณไม่โค้งงอหากคุณตัดสินใจฟังเพลงด้วยค่า p-f ดังกล่าวในทันที อย่างไรก็ตามฉันแนะนำให้คำนวณกำลังขับและแรงดันไฟฟ้าโดยใช้โปรแกรมนี้ด้วย สำหรับ Lanzar duU คุณสามารถเลือกได้ประมาณ 4-7 V.

รายละเอียดเพิ่มเติมเกี่ยวกับโปรแกรม "พาวเวอร์ซัพ"และวิธีการคำนวณมีเขียนไว้ เว็บไซต์ ผู้เขียน (AudioKiller)

ทั้งหมดนี้เป็นจริงโดยเฉพาะอย่างยิ่งหากคุณตัดสินใจซื้อหม้อแปลงใหม่ หากคุณมีมันอยู่ในถังขยะอยู่แล้วและทันใดนั้นปรากฎว่ามีพลังงานมากกว่าที่คำนวณไว้คุณสามารถใช้มันได้อย่างปลอดภัยการสำรองเป็นสิ่งที่ดี แต่ไม่จำเป็นต้องเป็นคนคลั่งไคล้ หากคุณตัดสินใจที่จะสร้างหม้อแปลงไฟฟ้าด้วยตัวเองในหน้าของ Sergei Komarov ก็เป็นเรื่องปกติ วิธีการคำนวณ .

วงจรนั้นเอง แหล่งจ่ายไฟแบบไบโพลาร์ที่ง่ายที่สุดดูเหมือนว่านี้:

ตัววงจรและรายละเอียดการก่อสร้างได้รับการอธิบายอย่างดีโดย Mikhail (D-Evil) ปลอม ตามมาตรฐาน TDA7294

ฉันจะไม่พูดซ้ำฉันจะสังเกตเฉพาะการแก้ไขเกี่ยวกับกำลังของหม้อแปลงตามที่อธิบายไว้ข้างต้นและเกี่ยวกับ สะพานไดโอด: เนื่องจากแรงดันไฟฟ้าของ Lanzar สามารถสูงกว่าของ TDA729x บริดจ์จึงต้อง "คง" แรงดันย้อนกลับให้สูงขึ้นตามลำดับ ไม่น้อยกว่า:

Urev_min = 1.2*(1.4*2*Uhalf-winding_of หม้อแปลงไฟฟ้า) ,

โดยที่ 1.2 คือปัจจัยด้านความปลอดภัย (20%)

และด้วยกำลังและความจุของหม้อแปลงขนาดใหญ่ในตัวกรอง เพื่อปกป้องหม้อแปลงและสะพานจากกระแสไหลเข้าขนาดมหึมาที่เรียกว่า โครงการ "ซอฟต์สตาร์ท" หรือ "ซอฟต์สตาร์ท"

ชิ้นส่วนเครื่องขยายเสียง

รายการชิ้นส่วนสำหรับหนึ่งช่องแนบอยู่ในไฟล์เก็บถาวร

บางนิกายต้องมีคำอธิบายพิเศษ:

ค1– ตัวเก็บประจุแบบคัปปลิ้งต้องมีคุณภาพดี ประเภทของตัวเก็บประจุที่ใช้เป็นตัวเก็บประจุแบบแยกมีความคิดเห็นที่แตกต่างกัน ดังนั้นผู้มีประสบการณ์จึงสามารถเลือกตัวเลือกที่ดีที่สุดสำหรับตนเองได้ สำหรับส่วนที่เหลือฉันแนะนำให้ใช้ตัวเก็บประจุแบบฟิล์มโพลีโพรพีลีนจากแบรนด์ดังเช่น Reef PHE426 เป็นต้น แต่หากไม่มีเช่นนั้น lavsan K73-17 ที่มีจำหน่ายกันอย่างแพร่หลายก็ค่อนข้างเหมาะสม

ความถี่ขีดจำกัดล่างซึ่งจะถูกขยายก็ขึ้นอยู่กับความจุของตัวเก็บประจุนี้ด้วย

ในแผงวงจรพิมพ์จาก interlavka.narod.ru เนื่องจาก C1 มีที่นั่งสำหรับตัวเก็บประจุที่ไม่มีขั้วซึ่งประกอบด้วยอิเล็กโทรไลต์สองตัวเชื่อมต่อกับ "minuses" ซึ่งกันและกันและ "pluses" ในวงจรและสับเปลี่ยนด้วย 1 ตัวเก็บประจุแบบฟิล์ม µF:

โดยส่วนตัวแล้วฉันจะทิ้งอิเล็กโทรไลต์และทิ้งตัวเก็บประจุแบบฟิล์มประเภทข้างต้นไว้หนึ่งตัวโดยมีความจุ 1.5-3.3 μF - ความจุนี้เพียงพอที่จะใช้งานแอมพลิฟายเออร์ที่ "วงกว้าง" ในกรณีที่ใช้งานกับซับวูฟเฟอร์ จำเป็นต้องมีความจุที่มากขึ้น ที่นี่เป็นไปได้ที่จะเพิ่มอิเล็กโทรไลต์ที่มีความจุ 22-50 μF x 25 V อย่างไรก็ตามแผงวงจรพิมพ์มีข้อจำกัดของตัวเองและตัวเก็บประจุแบบฟิล์ม 2.2-3.3 μF ไม่น่าจะพอดีที่นั่น ดังนั้นเราจึงตั้งค่า 2x22 uF 25 V + 1 uF

R3, R6– บัลลาสต์ แม้ว่าในตอนแรกตัวต้านทานเหล่านี้จะถูกเลือกให้เป็น 2.7 kOhm แต่ฉันจะคำนวณใหม่ให้เป็นแรงดันไฟฟ้าที่ต้องการของเครื่องขยายเสียงโดยใช้สูตร:

R=(อัชเดอร์ – 15V)/Ist (kOhm) ,

โดยที่ Ist – กระแสรักษาเสถียรภาพ, mA (ประมาณ 8-10 mA)

L1 –ลวด 0.8 มม. 10 รอบบนแมนเดรลขนาด 12 มม. ทุกอย่างถูกทาด้วย superglue และหลังจากการอบแห้งตัวต้านทานจะถูกวางไว้ข้างใน R31.

ตัวเก็บประจุด้วยไฟฟ้า C8, C11, C16, C17แรงดันไฟฟ้าต้องคำนวณให้ไม่ต่ำกว่าแรงดันไฟฟ้าโดยมีระยะขอบ 15-20% ตัวอย่างเช่นที่ ±35 V ตัวเก็บประจุ 50 V เหมาะสม และที่ ±50 V คุณต้องเลือก 63 โวลต์ แรงดันไฟฟ้าของตัวเก็บประจุด้วยไฟฟ้าอื่นๆ แสดงอยู่ในแผนภาพ

ตัวเก็บประจุแบบฟิล์ม (ไม่มีขั้ว) มักจะไม่ได้รับการจัดอันดับให้ต่ำกว่า 63 V ดังนั้นจึงไม่น่าจะเป็นปัญหา

ตัวต้านทานทริมเมอร์ R15– หลายเลี้ยว ประเภท 3296

ภายใต้ ตัวต้านทานตัวปล่อยR26, R27, R29 และ R30– กระดานมีที่นั่งสำหรับวางสายเซรามิก เอส.คิว.พี.ตัวต้านทาน 5 วัตต์ ช่วงของค่าที่ยอมรับได้คือ 0.22-0.33 โอห์ม แม้ว่า SQP จะยังห่างไกลจากตัวเลือกที่ดีที่สุด แต่ก็มีราคาไม่แพง

คุณยังสามารถใช้ตัวต้านทานในประเทศ C5-16 ได้ ฉันไม่ได้ลอง แต่อาจดีกว่า SQP ด้วยซ้ำ

ตัวต้านทานอื่นๆ– C1-4 (คาร์บอน) หรือ C2-23 (MLT) (ฟิล์มโลหะ) ทั้งหมดยกเว้นที่ระบุไว้แยกต่างหาก - ที่ 0.25 W.

การทดแทนที่เป็นไปได้บางอย่าง:

  1. ทรานซิสเตอร์ที่จับคู่จะถูกแทนที่ด้วยคู่อื่น การเขียนทรานซิสเตอร์คู่หนึ่งจากสองคู่ที่แตกต่างกันนั้นเป็นสิ่งที่ยอมรับไม่ได้
  2. วีที5/วีที6สามารถเปลี่ยนเป็น 2SB649/2SD669 ได้ ควรสังเกตว่า pinout ของทรานซิสเตอร์เหล่านี้จะถูกมิเรอร์โดยสัมพันธ์กับ 2SA1837/2SC4793 และเมื่อใช้งานจะต้องหมุน 180 องศาโดยสัมพันธ์กับที่วาดบนกระดาน
  3. วีที8/วีที9– บน 2SC5171/2SA1930
  4. VT7– บน BD135, BD137
  5. ทรานซิสเตอร์ระยะต่าง ( เวอร์มอนต์1 และVT3), (เวอร์มอนต์2 และVT4) ขอแนะนำให้เลือกคู่ที่มีสเปรดเบต้าน้อยที่สุด (hFE) โดยใช้เครื่องทดสอบ ความแม่นยำ 10-15% ก็เพียงพอแล้ว ด้วยการกระจายที่รุนแรง ทำให้ระดับแรงดันไฟฟ้าตรงที่เอาต์พุตเพิ่มขึ้นเล็กน้อย กระบวนการนี้อธิบายโดย Mikhail (D-Evil) ใน FAK บนเครื่องขยายเสียง VP .

อีกตัวอย่างหนึ่งของกระบวนการวัดผลเบต้า:

ทรานซิสเตอร์ 2SC5200/2SA1943 เป็นส่วนประกอบที่แพงที่สุดในวงจรนี้และมักเป็นของปลอม คล้ายกับ 2SC5200/2SA1943 จริงจาก Toshiba โดยมีเครื่องหมายแตกสองอันด้านบนและมีลักษณะดังนี้:

ขอแนะนำให้ใช้ทรานซิสเตอร์เอาท์พุตที่เหมือนกันจากแบตช์เดียวกัน (ในรูปที่ 512 คือหมายเลขแบตช์ เช่น สมมติว่าทั้ง 2SC5200 ที่มีหมายเลข 512) จากนั้นกระแสนิ่งเมื่อติดตั้งสองคู่จะกระจายอย่างเท่าเทียมกันมากขึ้นในแต่ละคู่

พีซีบี

แผงวงจรพิมพ์ถูกนำมาจาก interlavka.narod.ru การแก้ไขในส่วนของฉันส่วนใหญ่เป็นลักษณะของเครื่องสำอาง ข้อผิดพลาดบางอย่างในค่าที่เซ็นชื่อก็ได้รับการแก้ไขเช่นกัน เช่น ตัวต้านทานแบบผสมสำหรับทรานซิสเตอร์รักษาเสถียรภาพความร้อน และสิ่งเล็กๆ น้อยๆ อื่น ๆ กระดานถูกดึงมาจากด้านชิ้นส่วน ไม่จำเป็นต้องมิเรอร์เพื่อสร้าง LUT!

  1. สำคัญ! ก่อนการบัดกรี แต่ละต้องตรวจสอบชิ้นส่วนเพื่อการบริการ ต้องวัดความต้านทานของตัวต้านทานเพื่อหลีกเลี่ยงข้อผิดพลาดในค่าที่กำหนด ต้องตรวจสอบทรานซิสเตอร์ด้วยเครื่องทดสอบความต่อเนื่องและอื่น ๆ การค้นหาข้อผิดพลาดดังกล่าวบนบอร์ดที่ประกอบในภายหลังนั้นยากกว่ามากดังนั้นจึงเป็นการดีกว่าที่จะใช้เวลาและตรวจสอบทุกอย่าง บันทึก มากเวลาและเส้นประสาท
  2. สำคัญ!ก่อนที่จะบัดกรีตัวต้านทานทริมเมอร์ R15จะต้อง "บิด" เพื่อให้ความต้านทานรวมถูกบัดกรีลงในช่องว่างในแทร็กนั่นคือหากคุณดูภาพด้านบนระหว่างขั้วขวาและขั้วกลาง ความต้านทานทั้งหมดของทริมเมอร์
  3. จัมเปอร์เพื่อหลีกเลี่ยงการลัดวงจรโดยไม่ตั้งใจ ควรใช้สายไฟหุ้มฉนวนจะดีกว่า
  4. ทรานซิสเตอร์ VT7-VT13ติดตั้งบนหม้อน้ำทั่วไปผ่านปะเก็นฉนวน - ไมก้าพร้อมแผ่นระบายความร้อน (เช่น KPT-8) หรือ Nomakon ไมก้าเหมาะกว่า ระบุไว้ในแผนภาพ วีที8,วีที9ในตัวเครื่องที่หุ้มฉนวน ดังนั้นจึงสามารถหล่อลื่นหน้าแปลนด้วยซิลิโคนได้ หลังจากติดตั้งบนหม้อน้ำแล้ว ผู้ทดสอบจะตรวจสอบตัวสะสมทรานซิสเตอร์ (ขากลาง) ว่าไม่มีการลัดวงจรหรือไม่ พร้อมหม้อน้ำ
  5. ทรานซิสเตอร์ วีที5,วีที6คุณต้องติดตั้งบนหม้อน้ำขนาดเล็กด้วย - ตัวอย่างเช่น โดยทั่วไปแผ่นแบน 2 แผ่นที่มีขนาดประมาณ 7x3 ซม. ให้ติดตั้งสิ่งที่คุณพบในถังขยะ เพียงอย่าลืมเคลือบด้วยแผ่นระบายความร้อน
  6. เพื่อให้หน้าสัมผัสความร้อนดีขึ้น ทรานซิสเตอร์แบบคาสเคดดิฟเฟอเรนเชียล ( วีที1 และวีที3), (วีที2 และวีที4) คุณยังสามารถหล่อลื่นพวกมันด้วยซิลิโคนแล้วกดพวกมันพร้อมกับการหดตัวด้วยความร้อน

การเปิดตัวและการตั้งค่าครั้งแรก

เราตรวจสอบทุกอย่างอย่างรอบคอบอีกครั้งหากทุกอย่างดูดีไม่มีข้อผิดพลาด "น้ำมูก" การลัดวงจรไปยังหม้อน้ำ ฯลฯ จากนั้นคุณสามารถดำเนินการเริ่มแรกได้

สำคัญ!จะต้องดำเนินการเริ่มต้นและตั้งค่าแอมพลิฟายเออร์ใดๆ เป็นครั้งแรก อินพุตลัดวงจรลงกราวด์ กระแสไฟถูกจำกัดและไม่มีโหลด - โอกาสที่บางสิ่งจะไหม้ก็ลดลงอย่างมาก วิธีแก้ปัญหาที่ง่ายที่สุดที่ฉันใช้คือ หลอดไส้ 60-150 วัตต์ต่ออนุกรมกับขดลวดปฐมภูมิของหม้อแปลงไฟฟ้า:

เราใช้เครื่องขยายเสียงผ่านหลอดไฟวัดแรงดันไฟฟ้ากระแสตรงที่เอาต์พุต: ค่าปกติไม่เกิน ± (50-70) mV ค่าคงที่ “การเดิน” ภายใน ±10 mV ถือว่าเป็นเรื่องปกติ เราควบคุมการมีอยู่ของแรงดันไฟฟ้า 15 V บนซีเนอร์ไดโอดทั้งสอง หากทุกอย่างเป็นปกติ ไม่มีอะไรระเบิดหรือไหม้ เราจะดำเนินการตั้งค่าต่อ

เมื่อสตาร์ทแอมพลิฟายเออร์ที่ใช้งานได้ด้วยกระแสนิ่ง = 0 หลอดไฟควรกะพริบสั้น ๆ (เนื่องจากกระแสเมื่อชาร์จตัวเก็บประจุในแหล่งจ่ายไฟ) จากนั้นจึงดับลง หากหลอดไฟสว่างแสดงว่ามีบางอย่างผิดปกติ ให้ปิดเครื่องแล้วมองหาข้อผิดพลาด

ดังที่ได้กล่าวไปแล้ว แอมพลิฟายเออร์นั้นติดตั้งได้ง่าย เพียงคุณต้องการเท่านั้น ตั้งค่ากระแสนิ่ง (TC)ทรานซิสเตอร์เอาท์พุท

ก็ควรที่จะจัดแสดง ในการ "อุ่นเครื่อง" เครื่องขยายเสียงเช่น ก่อนติดตั้งควรปล่อยให้เล่นสักครู่ 15-20 นาที ในระหว่างการติดตั้ง TP อินพุตจะต้องลัดวงจรลงกราวด์และเอาต์พุตแขวนลอยอยู่ในอากาศ

กระแสไฟฟ้านิ่งสามารถพบได้โดยการวัดแรงดันตกคร่อมตัวต้านทานตัวปล่อยไฟฟ้าคู่หนึ่ง เช่น ร26และ ร27(ตั้งมัลติมิเตอร์ไว้ที่ขีดจำกัด 200 mV, โพรบไปที่ตัวปล่อย VT10และ วีที11):

ดังนั้น อิป็อก = Uv/(R26+R26) .

ต่อไป ได้อย่างราบรื่นโดยไม่กระตุกเราหมุนทริมเมอร์แล้วดูการอ่านมัลติมิเตอร์ จำเป็นต้องติดตั้ง 70-100 มิลลิแอมป์- สำหรับค่าตัวต้านทานที่ระบุในรูปจะเทียบเท่ากับการอ่านมัลติมิเตอร์ (30-44) mV

หลอดไฟอาจเริ่มเรืองแสงเล็กน้อย ลองตรวจสอบระดับแรงดันไฟ DC ที่เอาท์พุตอีกครั้ง หากทุกอย่างเป็นปกติคุณสามารถเชื่อมต่อลำโพงและฟังได้

รูปถ่ายของเครื่องขยายเสียงที่ประกอบแล้ว

ข้อมูลที่เป็นประโยชน์อื่นๆ และตัวเลือกการแก้ไขปัญหาที่เป็นไปได้

การกระตุ้นตัวเองของเครื่องขยายเสียง:กำหนดทางอ้อมโดยการให้ความร้อนของตัวต้านทานในวงจร Zobel - ร28- กำหนดได้อย่างน่าเชื่อถือโดยใช้ออสซิลโลสโคป เพื่อกำจัดสิ่งนี้ ให้ลองเพิ่มพิกัดของตัวเก็บประจุแก้ไข C9และ ค10.

ส่วนประกอบ DC ระดับสูงที่เอาต์พุต:เลือกทรานซิสเตอร์แบบคาสเคดดิฟเฟอเรนเชียล ( วีที1 และวีที3), (วีที2 และวีที4) โดย "เบตต้า" หากไม่ได้ผลหรือไม่มีวิธีเลือกที่แม่นยำกว่านี้ คุณสามารถลองเปลี่ยนค่าของตัวต้านทานตัวใดตัวหนึ่งได้ R4และ R5- แต่วิธีแก้ปัญหานี้ไม่ใช่วิธีที่ดีที่สุด การเลือกทรานซิสเตอร์ยังดีกว่า

ตัวเลือกในการเพิ่มความไวเล็กน้อย:คุณสามารถเพิ่มความไวของแอมพลิฟายเออร์ (เกน) ได้โดยการเพิ่มค่าตัวต้านทาน ร14.โคฟ. กำไรสามารถคำนวณได้จากสูตร:

กู่ = 1+R14/R11, (ครั้งหนึ่ง)

แต่อย่าประมาทจนเกินไปเพราะว่าจะเพิ่มขึ้นเรื่อยๆ ร14ความลึกของการตอบรับด้านสิ่งแวดล้อมลดลง และความไม่สม่ำเสมอของการตอบสนองความถี่และซอยจะเพิ่มขึ้น เป็นการดีกว่าที่จะวัดระดับแรงดันเอาต์พุตของแหล่งกำเนิดที่ปริมาตรเต็ม (แอมพลิจูด) และคำนวณค่า Ku ที่จำเป็นในการใช้งานแอมพลิฟายเออร์ที่มีการสวิงแรงดันเอาต์พุตเต็ม โดยมีระยะขอบ 3 dB (ก่อนที่จะตัด)

สำหรับข้อมูลเฉพาะ สมมติว่าค่าสูงสุดที่ยอมรับได้ในการเพิ่ม K คือ 40-50 หากคุณต้องการมากกว่านี้ ให้สร้างปรีแอมป์

หากคุณมีคำถามใด ๆ โปรดเขียนถึงหัวข้อที่เหมาะสม ไปที่ฟอรัม - ขอให้มีความสุขในการสร้าง!

สวัสดีตอนเย็นท่านสุภาพบุรุษนักวิทยุสมัครเล่น! ทุกอย่างเริ่มต้นด้วยความจริงที่ว่าในบ้านของเขา UMZCH ต้องการมานานแล้วที่จะละทิ้ง TDA-sheks ราคาถูกและย้ายไปยังระดับที่สูงขึ้น - เครื่องขยายเสียงทรานซิสเตอร์ที่ดี ฉันอ่านฟอรั่มที่หลากหลายหลายหน้า ดูแกลเลอรีรูปภาพต่างๆ ทบทวนบทวิจารณ์... และตัดสินใจลองประกอบอันใหม่ให้ตัวเอง ตัวเลือกนี้ตกอยู่ที่แอมพลิฟายเออร์ Lanzar ที่มีชื่อเสียงและมีคุณสมบัติที่ดี จากนั้นใช้เวลาหนึ่งเดือนในการศึกษาวงจรทุกประเภทที่เป็นไปได้สำหรับแอมพลิฟายเออร์นี้และเลือกวงจรที่เหมาะสมที่สุดและวงจรที่เหมาะสมในแง่ของคุณลักษณะ

แผนผังของ ULF Lanzar

สำหรับฉันดูเหมือนว่ามันค่อนข้างง่ายที่จะทำซ้ำและปรับแต่ง ถึงแม้ว่ามันจะเป็นฟอรั่มที่ได้รับความสนใจมากที่สุดในทุกฟอรั่มก็ตาม! ฉันไปตลาดวิทยุ ซื้อชิ้นส่วน ราคาฉัน 110 UAH - มากสำหรับนักเรียน ฉันจะบอกคุณ แต่ผลลัพธ์ที่ได้ก็คุ้มค่า เพิ่มเติมในภายหลัง... ฉันตั้งใจจะทำ แผงวงจรพิมพ์ที่มีการแกะสลักใช้เวลาหนึ่งชั่วโมงครึ่ง ฉันวางยาพิษด้วยเฟอร์ริกคลอไรด์ ฉันยังไม่ชินกับมันเพราะฉันใช้คอปเปอร์ซัลเฟตเป็นหลัก หลังจากเตรียมบอร์ดแห่งอนาคต Lanzara ก็ทำการบัดกรี ก่อนอื่นเลย จัมเปอร์ถูกบัดกรี จากนั้นจึงบัดกรีตัวต้านทาน ตัวเก็บประจุ ทรานซิสเตอร์...


เมื่อบัดกรีบอร์ดแล้วเราไปยังสิ่งสำคัญ - การตั้งค่ากระแสไม่โหลดของ UMZCH ที่นี่ทุกอย่างง่ายสำหรับฉัน - ฉันตั้งค่าทริมเมอร์เป็นค่าเฉลี่ยบัดกรีมันตรวจสอบน้ำมูกบนบอร์ดแล้วเปิดเครื่อง แม้ไม่มีฟิวส์ (ไม่เหมือนหลอดไฟ) Lanzar สตาร์ททันทีขับเป็นเวลา 15 นาทีจนกระทั่ง VC อุ่นเครื่อง แต่ทริมเมอร์ไม่ดึงวัดแรงดันตกบนตัวต้านทานห้าวัตต์ - มันไม่เปลี่ยนแปลงไม่มีเสียงรบกวนหรือการบิดเบือนอื่น ๆ ที่เห็นได้ชัดเจนด้วยออสซิลโลสโคป ซึ่งแสดงให้เห็นความสามารถในการทำซ้ำของวงจรนี้สูง!


ตอนนี้เกี่ยวกับความประทับใจของเสียง: ก่อนหน้านี้เมื่อฟัง tda7294 เป็นเวลาอย่างน้อยหนึ่งชั่วโมงและข้อยกเว้นตามมารู้สึกราวกับว่าหมวกที่ยืดออกอย่างแน่นหนาถูกถอดออกจากศีรษะของฉัน จากนั้นฉันก็รู้ว่านี่เป็นเพราะขาดความถี่เสียงกลาง tda7294 .


ตอนนี้ถึงเวลาโหลด lanzar ด้วยลำโพงกำลังต่ำคู่หนึ่ง เนื่องจากแหล่งจ่ายไฟของฉันคือการทดสอบ +-22V ดังนั้นลำโพงขนาดเล็ก 25 วัตต์จึงเหมาะสำหรับมัน

ภาพถ่ายของ UMZCH ที่เสร็จแล้ว

อย่างที่คุณเห็นจากรูปภาพตัวเก็บประจุของแหล่งจ่ายไฟไม่ได้อ้วนมากเพียง 470 uF แต่ในแง่ของแรงดันไฟฟ้าพวกเขามีระยะขอบมากเนื่องจากมีการวางแผนในอนาคตที่จะจ่ายไฟให้กับ Lanzar จาก +- 65V! ลำโพงเหล่านี้เชื่อมต่อกับเครื่องขยายเสียงในระหว่างขั้นตอนการตั้งค่า

พันด้วยสว่านขนาด 10 มม. และประกอบด้วยลวด 0.8 มม. 10 รอบ คุณสามารถเกลี่ย superglue บนคอยล์ที่ทำเสร็จแล้วได้

ตัวต้านทานตัวปล่อยของทรานซิสเตอร์เอาต์พุตถูกเลือกด้วยกำลัง 5 วัตต์ ในระหว่างการทำงานจะมีความร้อนมากเกินไป ค่าของตัวต้านทานเหล่านี้ไม่สำคัญและสามารถอยู่ระหว่าง 0.22 ถึง 0.39 โอห์ม

หลังจากประกอบเครื่องขยายเสียงเสร็จแล้ว เราจะเข้าสู่ขั้นตอนการทดสอบ เราหมุนขั้วของทรานซิสเตอร์อย่างระมัดระวังและตรวจสอบการลัดวงจร จากนั้นเราดูการติดตั้งอีกครั้งตรวจสอบบอร์ดด้วยตา - เราให้ความสนใจเป็นพิเศษกับการเชื่อมต่อที่ถูกต้องของทรานซิสเตอร์และซีเนอร์ไดโอดหากทรานซิสเตอร์บางตัวถูกแทนที่ด้วยทรานซิสเตอร์ที่คล้ายกันจากนั้นดูหนังสืออ้างอิงตั้งแต่บทสรุปของ ทรานซิสเตอร์และแอนะล็อกที่ใช้ในวงจรอาจแตกต่างกัน


หากเชื่อมต่อไม่ถูกต้อง ตัวซีเนอร์ไดโอดจะทำหน้าที่เหมือนไดโอด และมีความเป็นไปได้ที่จะทำลายวงจรทั้งหมดเนื่องจากซีเนอร์ไดโอดที่เชื่อมต่อไม่ถูกต้อง


ตัวต้านทานแบบปรับได้สำหรับการปรับกระแสนิ่งของสเตจเอาท์พุต - ขอแนะนำให้ใช้ (เป็นที่ต้องการมาก) เพื่อใช้ตัวต้านทานแบบหลายเทิร์นที่มีความต้านทาน 1 kOhm ในขณะที่ความต้านทานระหว่างการติดตั้งควรสูงสุด - 1 kOhm ตัวต้านทานแบบหมุนหลายรอบจะช่วยให้คุณสามารถปรับกระแสนิ่งของสเตจเอาต์พุตได้ด้วยความแม่นยำสูงมาก


ขอแนะนำให้ใช้ตัวเก็บประจุด้วยไฟฟ้าทั้งหมดที่มีแรงดันไฟฟ้า 63 หรือดีกว่านั้นคือ 100 โวลต์

ก่อนประกอบเครื่องขยายเสียง เราจะตรวจสอบส่วนประกอบทั้งหมดอย่างละเอียดเพื่อดูความสามารถในการซ่อมบำรุง ไม่ว่าจะเป็นของใหม่หรือของมือสองก็ตาม