В космосе есть чёрная дыра. Черная дыра. Что это такое? Где находился город Библ

Прогнозирует, что в черной дыре сингулярность, место, в котором приливные силы становятся бесконечно большими, и как только вы преодолеваете горизонт событий, вы уже не можете попасть куда-либо еще, кроме как в сингулярность. Соответственно, ОТО лучше не использовать в этих местах - она попросту не работает. Чтобы сказать, что происходит внутри черной дыры, нам нужна теория квантовой гравитации. Общепризнанно, что эта теория заменит сингулярность чем-то другим.

Как образуются черные дыры?

В настоящее время мы знаем о четырех разных способах образования черных дыр. Лучше всего понимаем связанный со звездным коллапсом. Достаточно большая звезда образует черную дыру после того, как ее ядерный синтез прекращается, потому что все, что уже можно было синтезировать, было синтезировано. Когда давление, создаваемое синтезом, прекращается, вещество начинает проваливаться к собственному гравитационному центру, становясь все более плотным. В конце концов, оно настолько уплотняется, что ничто не может преодолеть гравитационное воздействие на поверхность звезды: так рождается черная дыра. Эти черные дыры называются «черными дырами солнечной массы» и наиболее распространены.

Следующим распространенным типом черных дыр являются «сверхмассивные черные дыры», которые можно найти в центрах многих галактик и которые имеют массы примерно в миллиард раз больше, чем черные дыры солнечной массы. Пока доподлинно неизвестно, как именно они формируются. Считается, что когда-то они начинались как черные дыры солнечной массы, которые в густонаселенных галактических центрах поглощали множество других звезд и росли. Тем не менее они, похоже, поглощают вещество быстрее, чем предполагает эта простая идея, и как именно они это делают — все еще остается предметом исследований.

Более спорной идеей стали первичные черные дыры, которые могли быть сформированы практически любой массой в крупных флуктуациях плотности в ранней Вселенной. Хотя это возможно, достаточно трудно найти модель, которая производит их, при этом не создавая чрезмерное их количество.

Наконец, есть очень умозрительная идея о том, что на Большом адронном коллайдере могут образовываться крошечные черные дыры с массами, близкими массе бозона Хиггса. Это работает только в том случае, если у нашей Вселенной имеются дополнительные измерения. Пока не было никаких подтверждений в пользу этой теории.

Откуда мы знаем, что черные дыры существуют?

У нас есть много наблюдательных доказательств существования компактных объектов с крупными массами, которые не излучают свет. Эти объекты выдают себя по гравитационному притяжению, например, за счет движения других звезд или газовых облаков вокруг них. Они также создают гравитационное линзирование. Мы знаем, что у этих объектов нет твердой поверхности. Это вытекает из наблюдений, потому что вещество, падая на объект с поверхностью, должно вызывать выброс большего числа частиц, чем вещество, падающее сквозь горизонт.

Почему в прошлом году Хокинг сказал, что черные дыры не существуют?

Он имел в виду, что черные дыры не имеют вечного горизонта событий, а только временный кажущийся горизонт (см. пункт первый). В строгом смысле только горизонт событий считается черной дырой.

Как черные дыры испускают излучение?

Черные дыры испускают излучение за счет квантовых эффектов. Важно отметить, что это квантовые эффекты вещества, а не квантовые эффекты гравитации. Динамическое пространство-время коллапсирующей черной дыры меняет само определение частицы. Подобно течению времени, которое искажается рядом с черной дырой, понятие частиц слишком зависимо от наблюдателя. В частности, когда наблюдатель, падающий в черную дыру, думает, что падает в вакуум, наблюдатель далеко от черной дыры думает, что это не вакуум, а полное частиц пространство. Именно растяжение пространства-времени вызывает этот эффект.

Впервые обнаруженное Стивеном Хокингом, испускаемое черной дырой излучение называется «излучением Хокинга». Это излучение имеет температуру, обратно пропорциональную массе черной дыры: чем меньше черная дыра, тем выше температура. У звездных и сверхмассивных черных дыр, которые мы знаем, температура значительно ниже температуры микроволнового фона и поэтому не наблюдается.

Что такое информационный парадокс?

Парадокс потери информации обусловлен излучением Хокинга. Это излучение сугубо термическое, то есть случайно и из определенных свойств имеет только температуру. Излучение само по себе не содержит никакой информации о том, как сформировалась черная дыра. Но когда черная дыра испускает излучение, она теряет массу и сокращается. Все это совершенно не зависит от вещества, которое стало частью черной дыры или из которого она образовалась. Выходит, зная только конечное состояние испарения нельзя сказать, из чего сформировалась черная дыра. Этот процесс «необратим» - и загвоздка в том, что в квантовой механике нет такого процесса.

Выходит, испарение черной дыры несовместимо с квантовой теории, известной нам, и с этим нужно что-то делать. Каким-то образом устранить несогласованность. Большинство физиков считают, что решение состоит в том, что излучение Хокинга должно каким-то образом содержать информацию.

Что предлагает Хокинг для решения информационного парадокса черной дыры?

Идея состоит в том, что у черных дыр должен быть способ хранить информацию, который до сих пор не приняли. Информация хранится на горизонте черной дыры и может вызывать крошечные смещения частиц в излучении Хокинга. В этих крошечных смещения может быть информация о попавшей внутрь материи. Точные детали этого процесса в настоящее время не определены. Ученые ждут более подробного технического документа от Стивена Хокинга, Малькома Перри и Эндрю Строминджера. Говорят, он появится в конце сентября.

На данный момент мы уверены, что черные дыры существуют, знаем, где они находятся, как образуются и чем станут в итоге. Но детали того, куда девается поступающая в них информация, до сих пор представляют одну из самых больших загадок Вселенной.

January 24th, 2013

Из всех гипотетических объектов Вселенной, предсказываемых научными теориями, черные дыры производят самое жуткое впечатление. И, хотя предположения об их существовании начали высказываться почти за полтора столетия до публикации Эйнштейном общей теории относительности, убедительные свидетельства реальности их существования получены совсем недавно.

Давайте начнем с того, как общая теория относительности решает вопрос о природе гравитации. Закон всемирного тяготения Ньютона утверждает, что между двумя любыми массивными телами во Вселенной действует сила взаимного притяжения. По причине такого гравитационного притяжения Земля обращается вокруг Солнца. Общая теория относительности заставляет нас взглянуть на систему Солнце—Земля иначе. Согласно этой теории в присутствии столь массивного небесного тела, как Солнце, пространство-время как бы проминается под его тяжестью, и равномерность его ткани нарушается. Представьте себе эластичный батут, на котором лежит тяжелый шар (например, от боулинга). Натянутая ткань прогибается под его весом, создавая вокруг разрежение. Таким же образом Солнце продавливает пространство-время вокруг себя.



Согласно этой картине Земля просто катается вокруг образовавшейся воронки (за исключением того, что маленький шарик, катающийся вокруг тяжелого на батуте неизбежно будет терять скорость и по спирали приближаться к большому). И то, что мы привычно воспринимаем как силу земного притяжения в нашей повседневной жизни, также есть ни что иное, как изменение геометрии пространства-времени, а не сила в ньютоновском понимании. На сегодня более удачного объяснения природы гравитации, чем дает нам общая теория относительности, не придумано.

А теперь представьте, что произойдет, если мы будем — в рамках предложенной картины — увеличивать и увеличивать массу тяжелого шара, не увеличивая при этом его физических размеров? Будучи абсолютно эластичной, воронка будет углубляться до тех пор, пока ее верхние края не сойдутся где-то высоко над совсем потяжелевшим шаром, и тогда он просто перестанет существовать при взгляде с поверхности. В реальной Вселенной, накопив достаточную массу и плотность материи, объект захлопывает вокруг себя пространственно-временную ловушку, ткань пространства-времени смыкается, и он теряет связь с остальной Вселенной, становясь невидимым для нее. Так возникает черная дыра.

Шварцшильд и его современники полагали, что столь странные космические объекты в природе не существуют. Сам Эйнштейн не только придерживался этой точки зрения, но и ошибочно считал, что ему удалось обосновать свое мнение математически.

В 1930-е годы молодой индийский астрофизик Чандрасекар доказал, что истратившая ядерное топливо звезда сбрасывает оболочку и превращается в медленно остывающий белый карлик лишь в том случае, если ее масса меньше 1,4 масс Солнца. Вскоре американец Фриц Цвикки догадался, что при взрывах сверхновых возникают чрезвычайно плотные тела из нейтронной материи; позднее к этому же выводу пришел и Лев Ландау. После работ Чандрасекара было очевидно, что подобную эволюцию могут претерпеть только звезды с массой больше 1,4 масс Солнца. Поэтому возник естественный вопрос — существует ли верхний предел массы для сверхновых, которые оставляют после себя нейтронные звезды?

В конце 30-х годов будущий отец американской атомной бомбы Роберт Оппенгеймер установил, что такой предел действительно имеется и не превышает нескольких солнечных масс. Дать более точную оценку тогда не было возможности; теперь известно, что массы нейтронных звезд обязаны находиться в интервале 1,5-3 Ms. Но даже из приблизительных вычислений Оппенгеймера и его аспиранта Джорджа Волкова следовало, что самые массивные потомки сверхновых не становятся нейтронными звездами, а переходят в какое-то другое состояние. В 1939 году Оппенгеймер и Хартланд Снайдер на идеализированной модели доказали, что массивная коллапсирующая звезда стягивается к своему гравитационному радиусу. Из их формул фактически следует, что звезда на этом не останавливается, однако соавторы воздержались от столь радикального вывода.


09.07.1911 - 13.04.2008

Окончательный ответ был найден во второй половине XX века усилиями целой плеяды блестящих физиков-теоретиков, в том числе и советских. Оказалось, что подобный коллапс всегда сжимает звезду «до упора», полностью разрушая ее вещество. В результате возникает сингулярность, «суперконцентрат» гравитационного поля, замкнутый в бесконечно малом объеме. У неподвижной дыры это точка, у вращающейся — кольцо. Кривизна пространства-времени и, следовательно, сила тяготения вблизи сингулярности стремятся к бесконечности. В конце 1967 года американский физик Джон Арчибальд Уилер первым назвал такой финал звездного коллапса черной дырой. Новый термин полюбился физикам и привел в восторг журналистов, которые разнесли его по всему миру (хотя французам он сначала не понравился, поскольку выражение trou noir наводило на сомнительные ассоциации).

Важнейшее свойство черной дыры — что бы в нее ни попало, обратно оно не вернется. Это касается даже света, вот почему черные дыры и получили свое название: тело, поглощающее весь свет, падающий на него, и не испускающее собственного кажется абсолютно черным. Согласно общей теории относительности, если объект приближается к центру черной дыры на критическое расстояние — это расстояние называется радиусом Шварцшильда, — он уже никогда не сможет вернуться назад. (Немецкий астроном Карл Шварцшильд (Karl Schwarzschild, 1873-1916) в последние годы своей жизни, используя уравнения общей теории относительности Эйнштейна, рассчитал гравитационное поле вокруг массы нулевого объема.) Для массы Солнца радиус Шварцшильда составляет 3 км, то есть, чтобы превратить наше Солнце в черную дыру, нужно уплотнить всю его массу до размера небольшого городка!


Внутри радиуса Шварцшильда теория предсказывает явления еще более странные: всё вещество черной дыры собирается в бесконечно малую точку бесконечной плотности в самом ее центре — математики называют такой объект сингулярным возмущением. При бесконечной плотности любая конечная масса материи, математически говоря, занимает нулевой пространственный объем. Происходит ли это явление реально внутри черной дыры, мы, естественно, экспериментально проверить не можем, поскольку всё попавшее внутрь радиуса Шварцшильда обратно не возвращается.

Не имея, таким образом, возможности «рассмотреть» черную дыру в традиционном смысле слова «смотреть», мы, тем не менее, можем обнаружить ее присутствие по косвенным признакам влияния ее сверхмощного и совершенно необычного гравитационного поля на материю вокруг нее.

Сверхмассивные черные дыры

В центре нашего Млечного Пути и других галактик располагается невероятно массивная черная дыра в миллионы раз тяжелее Солнца. Эти сверхмассивные черные дыры (такое название они получили) были обнаружены по наблюдениям за характером движения межзвездного газа вблизи центров галактик. Газы, судя по наблюдениям, вращаются на близком удалении от сверхмассивного объекта, и простые расчеты с использованием законов механики Ньютона показывают, что объект, притягивающий их, при мизерном диаметре обладает чудовищной массой. Так закрутить межзвездный газ в центре галактики может только черная дыра. Фактически астрофизики нашли уже десятки таких массивных черных дыр в центрах соседних с нашей галактик, и сильно подозревают, что центр любой галактики — суть черная дыра.


Черные дыры со звездной массой

Согласно нашим нынешним представлениям об эволюции звезд, когда звезда с массой, превышающей примерно 30 масс Солнца, гибнет со вспышкой сверхновой, внешняя ее оболочка разлетается, а внутренние слои стремительно обрушиваются к центру и образуют черную дыру на месте израсходовавшей запасы топлива звезды. Изолированную в межзвездном пространстве черную дыру такого происхождения выявить практически невозможно, поскольку она находится в разреженном вакууме и никак не проявляет себя в плане гравитационных взаимодействий. Однако, если такая дыра входила в состав двойной звездной системы (две горячих звезды, обращающихся по орбите вокруг их центра масс), черная дыра будет по-прежнему оказывать гравитационное воздействие на парную ей звезду. Астрономы сегодня имеют более десятка кандидатов на роль звездных систем такого рода, хотя строгих доказательств не получено в отношении ни одной из них.

В двойной системе с черной дырой в ее составе вещество «живой» звезды будет неизбежно «перетекать» в направлении черной дыры. И закручиваться высасываемое черной дырой вещество при падении в черную дыру будет по спирали, исчезая при пересечении радиуса Шварцшильда. При подходе к роковой границе, однако, засасываемое в воронку черной дыры вещество будет неизбежно уплотняться и разогреваться в силу учащения соударений между поглощаемыми дырой частицами, пока не разогреется до энергий излучения волн в рентгеновском диапазоне спектра электромагнитного излучения. Астрономы могут измерить периодичность изменения интенсивности рентгеновского излучения такого рода и вычислить, сопоставив ее с другими доступными данными, примерную массу объекта, «перетягивающего» на себя материю. Если масса объекта превышает предел Чандрасекара (1,4 массы Солнца), этот объект не может являться белым карликом, в которого суждено выродиться нашему светилу. В большинстве выявленных случаев наблюдения подобных двойных рентгеновских звезд массивным объектом является нейтронная звезда. Однако насчитано уже более десятка случаев, когда единственным разумным объяснением является присутствие в двойной звездной системе черной дыры.

Все другие типы черных дыр куда более спекулятивны и основаны исключительно на теоретических изысканиях — экспериментальных подтверждений их существования не имеется вовсе. Во-первых, это черные мини-дыры с массой, сопоставимой с массой горы и сжатой до радиуса протона. Идею об их зарождении на начальной стадии формирования Вселенной непосредственно после Большого взрыва высказал английский космолог Стивен Хокинг (см. Скрытый принцип необратимости времени). Хокинг предположил, что взрывами мини-дыр можно объяснить действительно загадочный феномен точеных вспышек гамма-излучения во Вселенной. Во-вторых, некоторые теории элементарных частиц предсказывают существование во Вселенной — на микро-уровне — настоящего решета из черных дыр, представляющих собой своего рода пену из отбросов мироздания. Диаметр таких микро-дыр предположительно составляет около 10-33 см — они в миллиарды раз мельче протона. На данный момент у нас нет каких-либо надежд на экспериментальную проверку даже самого факта существования таких черных дыр-частиц, не говоря уже о том, чтобы хоть как-то исследовать их свойства.


А что произойдет с наблюдателем, если он вдруг окажется по ту сторону гравитационного радиуса, иначе именуемого горизонтом событий. Здесь начинается самое удивительное свойство черных дыр. Не зря, говоря о черных дырах, мы всегда упоминали время, точнее пространство-время. По теории относительности Эйнштейна, чем быстрее движется тело, тем больше становится его масса, но тем медленнее начинает идти время! На малых скоростях в нормальных условиях этот эффект незаметен, но если тело (космический корабль) движется со скоростью близкой к скорости света, то масса его увеличивается, а время замедляется! При скорости тела равной скорости света, масса обращается в бесконечность, а время останавливается! Об этом говорят строгие математические формулы. Вернемся к черной дыре. Представим себе фантастическую ситуацию, когда звездолет с космонавтами на борту приближается к гравитационному радиусу или горизонту событий. Понятно, что горизонт событий назван так потому, что мы может наблюдать какие-либо события (вообще что-то наблюдать) только до этой границы. Что за этой границей мы наблюдать не в состоянии. Тем не менее, находясь внутри корабля, приближающегося к черной дыре, космонавты будут чувствовать себя, как и раньше, т.к. по их часам время будет идти «нормально». Космический корабль спокойно пересечет горизонт событий, и будет двигаться дальше. Но поскольку скорость его будет близка к скорости света, то до центра черной дыры космический корабль достигнет, буквально, за миг.

А для внешнего наблюдателя космический корабль просто остановится на горизонте событий, и будет находиться там практически вечно! Таков парадокс колоссального тяготения черных дыр. Закономерен вопрос, а останутся ли живы космонавты, уходящие в бесконечность по часам внешнего наблюдателя. Нет. И дело вовсе не в громадном тяготении, а в приливных силах, которые у столь малого и массивного тела сильно меняются на малых расстояниях. При росте космонавта 1 м 70 см приливные силы у его головы будут гораздо меньше, чем у ног и его просто разорвет уже на горизонте событий. Итак, мы в общих чертах выяснили, что такое черные дыры, но речь пока шла о черных дырах звездной массы. В настоящее время астрономам удалось обнаружить сверхмассивные черные дыры, масса которых может составлять миллиард солнц! Сверхмассивные черные дыры по свойствам не отличаются от своих меньших собратьев. Они лишь гораздо массивнее и, как правило, находятся в центрах галактик - звездных островов Вселенной. В центре Нашей Галактики (Млечный Путь) тоже имеется сверхмассивная черная дыра. Колоссальная масса таких черных дыр позволят вести их поиск не только в Нашей Галактике, но и в центрах далеких галактик, находящихся на расстоянии миллионы и миллиарды световых лет от Земли и Солнца. Европейские и американские ученые провели глобальный поиск сверхмассивных черных дыр, которые, согласно современным теоретическим выкладкам, должны находиться в центре каждой галактики.

Современные технологии позволяют выявить наличие этих коллапсаров в соседних галактиках, но обнаружить их удалось совсем немного. Значит, либо черные дыры просто скрываются в плотных газопылевых облаках в центральной части галактик, либо они находятся в более отдаленных уголках Вселенной. Итак, черные дыры можно обнаружить по рентгеновскому излучению, испускаемому во время аккреции вещества на них, и чтобы произвести перепись подобных источников, в околоземное комическое пространство были запущены спутники с рентгеновскими телескопами на борту. Занимаясь поиском источников Х-лучей, космические обсерватории «Чандра» (Chandra) и «Росси» (Rossi) обнаружили, что небо заполнено фоновым рентгеновским излучением, и является в миллионы раз более ярким, чем в видимых лучах. Значительная часть этого фонового рентгеновского излучения неба должна исходить от черных дыр. Обычно в астрономии говорят о трех типах черных дыр. Первый — черные дыры звездных масс (примерно 10 масс Солнца). Они образуются из массивных звезд, когда в тех заканчивается термоядерное горючее. Второй — сверхмассивные черные дыры в центрах галактик (массы от миллиона до миллиардов солнечных). И наконец, первичные черные дыры, образовавшиеся в начале жизни Вселенной, массы которых невелики (порядка массы крупного астероида). Таким образом, большой диапазон возможных масс черных дыр остается незаполненным. Но где эти дыры? Заполняя пространство рентгеновскими лучами, они, тем не менее, не желают показывать свое истинное «лицо». Но чтобы построить четкую теорию связи фонового рентгеновского излучения с черными дырами, необходимо знать их количество. На данный момент космическим телескопам удалось обнаружить лишь небольшое количество сверхмассивных черных дыр, существование которых можно считать доказанным. Косвенные признаки позволяют довести количество наблюдаемых черных дыр, ответственных за фоновое излучение, до 15%. Приходится предполагать, что остальные сверхмассивные черные дыры просто прячутся за толстым слоем пылевых облаков, которые пропускают только рентгеновские лучи высокой энергии или же находятся слишком далеко для обнаружения современными средствами наблюдений.


Сверхмассивная черная дыра (окрестности) в центре галактики M87 (рентгеновское изображение). Виден выброс (джет) от горизонта событий. Изображение с сайта www.college.ru/astronomy

Поиск скрытых черных дыр — одна из главных задач современной рентгеновской астрономии. Последние прорывы в этой области, связанные с исследованиями при помощи телескопов «Чандра» и «Росси», тем не менее охватывают лишь низкоэнергетический диапазон рентгеновского излучения — приблизительно 2000-20 000 электрон-вольт (для сравнения, энергия оптического излучения — около 2 электрон-вольт). Существенные поправки в эти исследования может внести европейский космический телескоп «Интеграл» (Integral), который способен проникнуть в еще недостаточно изученную область рентгеновского излучения с энергией 20 000-300 000 электрон-вольт. Важность изучения этого типа рентгеновских лучей состоит в том, что хотя рентгеновский фон неба имеет низкую энергетику, но на этом фоне проявляются множественные пики (точки) излучения с энергией около 30 000 электрон-вольт. Ученые еще только приоткрывают завесу тайны того, что порождает эти пики, а «Интеграл» — первый достаточно чувствительный телескоп, способный найти подобные источники рентгеновских лучей. По предположению астрономов, лучи высокой энергии порождают так называемые Комптон-объекты (Compton-thick), то есть сверхмассивные черные дыры, окутанные пылевой оболочкой. Именно Комптон-объекты ответственны за пики рентгеновского излучения в 30 000 электрон-вольт на поле фонового излучения.

Но, продолжая исследования, ученые пришли к выводу, что Комптон-объекты составляют лишь 10% от того числа черных дыр, которые должны создавать пики высоких энергий. Это — серьезное препятствие для дальнейшего развития теории. Значит, недостающие рентгеновские лучи поставляют не Compton-thick, а обычные сверхмассивные черные дыры? Тогда как быть с пылевыми завесами для рентгеновских лучей низкой энергии.? Ответ, похоже, кроется в том, что многие черные дыры (Комптон-объекты) имели достаточно времени, чтобы поглотить весь газ и пыль, которые окутывали их, но до этого имели возможность заявить о себе рентгеновским излучением высокой энергии. После поглощения всего вещества такие черные дыры уже оказались неспособными генерировать рентгеновское излучение на горизонте событий. Становится понятно, почему эти черные дыры нельзя обнаружить, и появляется возможность отнести недостающие источники фонового излучения на их счет, так как хотя черная дыра уже не излучает, но ранее созданное ей излучение продолжает путешествие по Вселенной. Тем не менее, вполне возможно, что недостающие черные дыры более скрыты, чем предполагают астрономы, то есть то, что мы не их видим, вовсе не значит, что их нет. Просто пока у нас не хватает мощности средств наблюдений, чтобы увидеть их. Тем временем ученые из NASA планируют расширить диапазон поиска скрытых черных дыр еще дальше во Вселенную. Именно там находится подводная часть айсберга, считают они. В течение нескольких месяцев исследования будут проводиться в рамках миссии «Свифт» (Swift). Проникновение в глубокую Вселенную позволит обнаружить прячущиеся черные дыры, найти недостающее звено для фонового излучения и пролить свет на их активность в раннюю эпоху Вселенной.

Некоторые черные дыры считаются более активными, чем их спокойные соседи. Активные черные дыры поглощают окружающее вещество, а если в полет тяготения попадет «зазевавшаяся» звезда, пролетающая мимо, то она непременно будет «съедена» самым варварским способом (разорванная в клочья). Поглощаемое вещество, падая на черную дыру, нагревается до огромных температур, и испытывает вспышку в гамма, рентгеновском и ультрафиолетовом диапазоне. В центре Млечного Пути так же находится сверхмассивная черная дыра, но ее труднее изучать, чем дыры в соседних или даже далеких галактиках. Это связано с плотной стеной газа и пыли, встающей на пути центру Нашей Галактики, ведь Солнечная система находится почти на краю галактического диска. Поэтому наблюдения активности черных дыр гораздо эффективней у тех галактик, ядро которых хорошо просматривается. При наблюдении одной из далеких галактик, расположенной в созвездии Волопаса на расстоянии 4-х миллиардов световых лет, астрономам впервые удалось отследить от начала и почти до конца процесс поглощения звезды супермассивной черной дырой. В течение тысяч лет этот гигантский коллапсар тихо-мирно покоился в центре безымянной эллиптической галактики, пока одна из звезд не осмелилась приблизиться к ней достаточно близко.

Мощная гравитация черной дыры разорвала звезду на части. Сгустки вещества начали падать на черную дыру и при достижении горизонта событий, ярко вспыхивать в ультрафиолетовом диапазоне. Эти вспышки и зафиксировал новый космический телескоп NASA Galaxy Evolution Explorer, изучающий небо в ультрафиолете. Телескоп и сегодня продолжает наблюдать за поведением отличившегося объекта, т.к. трапеза черной дыры еще не закончилась, а остатки звезды продолжают падать в бездну времени и пространства. Наблюдения таких процессов, в конце концов, помогут лучше понять, как черные дыры развиваются вместе с их родительскими галактиками (или, наоборот, галактики развиваются с родительской черной дырой). Более ранние наблюдения показывают, что подобные эксцессы не редкость во Вселенной. Ученые подсчитали, что в среднем звезда поглощается сверхмассивной черной дырой типичной галактики один раз в 10000 лет, но поскольку галактик большое количество, то наблюдать поглощения звезд можно гораздо чаще.


источник

Несмотря на огромные достижения в области физики и астрономии, есть немало явлений, суть которых до конца не раскрыта. К таким явлениям принадлежат загадочные черные дыры, вся информация о которых носит лишь теоретический характер и не может быть проверена практическим путем.

Существуют ли черные дыры?

Еще до появления теории относительности астрономами была высказана теория о существовании черных воронок. После публикации теории Эйнштейна был пересмотрен вопрос гравитации и в проблеме черных дыр появились новые предположения. Увидеть этот космический объект нереально, ведь он поглощает весь свет, попадающий в его пространство. Ученые доказывают наличие черных дыр, опираясь на анализ движения межзвездного газа и траектории передвижений звезд.

Образование черных дыр ведет к изменению вокруг них пространственно-временных характеристик. Время будто сжимается под влиянием огромной гравитации и замедляется. Звезды, оказавшиеся на пути черной воронки, могут уклоняться от своего маршрута и даже менять направление движения. Черные дыры поглощают энергию своей звезды-двойника, чем также проявляют себя.

Как выглядит черная дыра?

Информация, касающаяся черных дыр, по большей части носит гипотетический характер. Ученые изучают их по их воздействию на пространство и излучению. Увидеть черные дыры во вселенной не представляется возможным, ведь они поглощают весь свет, попадающий в близлежащее пространство. Со специальных спутников было сделано рентгеновское изображение черных объектов, на котором виден яркий центр, являющийся источником излучения лучей.

Как образуются черные дыры?

Черная дыра в космосе является отдельным миром, который имеет свои уникальные характеристики и свойства. Свойства космических дыр обусловлены причинами их появления. Относительно появления черных объектов существуют такие теории:

  1. Они являются результатом коллапсов, происходящих в космосе. Это может быть столкновение крупных космических тел или взрыв сверхновых звезд.
  2. Они возникают вследствие утяжеления космических объектов при сохранении их размеров. Причина такого явления не определена.

Черная воронка – это объект в космосе, имеющий относительно небольшой размер при огромной массе. Теория черной дыры говорит, что каждый космический объект потенциально может стать черной воронкой, если в результате каких-то явлений он будет терять свои размеры, но сохранять массу. Ученые даже говорят о существовании множества черных микродыр – миниатюрных космических объектах с относительно большой массой. Такое несоответствие массы и размера приводит к усилению гравитационного поля и появлению сильного притяжения.

Что находится в черной дыре?

Черный таинственный объект можно назвать дырой лишь с большой натяжкой. Центром этого явления является космическое тело, имеющее повышенную гравитацию. Результатом такой гравитации становится сильное притяжение к поверхности этого космического тела. При этом образуется вихревой поток, в котором вращаются газы и крупицы космической пыли. Поэтому черную дыру правильнее называть черной воронкой.

Узнать на практике, что внутри черной дыры, невозможно, потому что уровень гравитации космической воронки не позволяет никакому объекту вырваться из зоны ее влияния. По мнению ученых, внутри черной дыры полная темнота, ведь кванты света исчезают в ней безвозвратно. Предполагается, что внутри черной воронки искажается пространство и время, законы физики и геометрии в этом месте не действуют. Такие особенности черных дыр предположительно могут приводить к образованию антивеществ, которые на данный момент не знакомы ученым.

Чем опасны черные дыры?

Иногда черные дыры описываются как объекты, поглощающие окружающие предметы, излучения и частицы. Такое представление неверно: свойства черной дыры позволяют ей впитывать лишь то, что попадает в зону ее влияния. Она может втягивать в себя космические микрочастицы и излучение, исходящее от звезд-двойников. Даже если планета находится вблизи черной дыры, она не будет поглощена, а продолжит двигаться по своей орбите.

Что будет, если попасть в черную дыру?

Свойства черных дыр зависят от силы гравитационного поля. Черные воронки притягивают к себе все, что попадает в зону их влияния. При этом изменяются пространственно-временные характеристики. Ученые, изучающие все о черных дырах, расходятся во мнении относительного того, что происходит с предметами в этой воронке:

  • одни ученые предполагают, что все предметы, попадающие в эти дыры, растягиваются или разрываются на куски и не успевают достичь поверхности притягивающего объекта;
  • другие же ученые утверждают, что в дырах искривляются все привычные характеристики, поэтому предметы там как бы исчезают во времени и пространстве. По этой причине черные дыры иногда называют воротами в иные миры.

Виды черных дыр

Черные воронки делятся по видам, исходя из способа их образования:

  1. Черные объекты звездных масс зарождаются в конце жизни некоторых звезд. Полное сгорание звезды и окончание термоядерных реакций приводит к сжатию звезды. Если же при этом звезда претерпит гравитационный коллапс, то сможет трансформироваться в черную воронку.
  2. Сверхмассивные черные воронки . Ученые утверждают, что сердцевиной любой галактики является сверхмассивная воронка, образование которой является началом появления новой галактики.
  3. Первичные черные дыры . Сюда могут относиться дыры различной массы, включая микродыры, образовавшиеся из-за расхождений в плотности материи и силе гравитации. Такие дыры – это воронки, образовавшиеся в начале зарождения Вселенной. Сюда же относятся такие объекты, как волосатая черная дыра. Отличаются эти дыры наличием лучей, похожих на волоски. Предполагается, что эти фотоны и гравитоны сохраняют часть информации, попадающей в черную дыру.
  4. Квантовые черные дыры . Появляются как результат ядерных реакций и живут непродолжительное время. Квантовые воронки представляют наибольший интерес, так как их изучение может помочь ответить на вопросы по проблеме черных космических объектов.
  5. Некоторые ученые выделяют такой вид космических объектов, волосатая черная дыра. Отличаются эти дыры наличием лучей, похожих на волоски. Предполагается, что эти фотоны и гравитоны сохраняют часть информации, попадающей в черную дыру.

Ближайшая черная дыра к Земле

Ближайшая черная дыра удалена от Земли на 3000 световых лет. Она называется V616 Monocerotis, или V616 Mon. Ее вес достигает 9-13 масс Солнца. Бинарный партнер этой дыры – звезда в полмассы Солнца. Еще одна относительно близкая к Земле воронка - Cygnus X-1. Она располагается от Земли в 6 тысячах световых лет и весит в 15 раз больше Солнца. Эта черная космическая дыра тоже имеет своего бинарного партнера, движение которого и помогает отследить влияние Cygnus X-1.

Черные дыры - интересные факты

Ученые рассказывают о черных объектах такие интересные факты:

  1. Если брать в расчет, что эти объекты являются центром галактик, то для поиска самой большой воронки следует обнаружить самую крупную галактику. Поэтому самая большая черная дыра во вселенной – воронка, находящаяся в галактике IC 1101 в центре скопления Abell 2029.
  2. Черные объекты на самом деле выглядят как разноцветные. Причина этого кроется в их радиомагнитном излучении.
  3. В середине черной дыры нет постоянных физических или математических законов. Все зависит от массы дыры и ее гравитационного поля.
  4. Черные воронки постепенно испаряются.
  5. Вес черных воронок может доходить до неимоверных размеров. Масса наибольшей черной дыры равняется 30 миллионам масс Солнца.

Понятие чёрной дыры известно всем — от школьника до людей преклонного возраста, оно используется в научной и фантастической литературе, в желтых СМИ и на научных конференциях. Но что конкретно представляют собой такие дыры, известно далеко не всем.

Из истории чёрных дыр

1783 г. Первая гипотеза существования такого явления, как чёрная дыра, была выдвинута в 1783 году английским учёным Джоном Мичеллом. В своей теории он объединил два творению Ньютона — оптику и механику. Идея Мичелла была такова: если свет — это поток мельчайших частиц, то, как и все другие тела, частицы должны испытывать притяжение гравитационного поля. Получается, чем массивнее звезда, тем сложнее свету противиться её притяжению. Через 13 лет после Мичелла, французский астроном и математик Лаплас выдвинул (скорее всего, независимо от британского коллеги) схожую теорию.

1915 г. Однако, все их труды оставались невостребованными вплоть до начала XX века. В 1915 году Альберт Эйнштейн опубликовал Общую теорию относительности и показал, что гравитация есть искривление пространства-времени, вызванное материей, а спустя несколько месяцев немецкий астроном и физик-теоретик Карл Шварцшильд использовал её для решения конкретной астрономической задачи. Он исследовал структуру искривленного пространства-времени вокруг Солнца и заново открыл феномен чёрных дыр.

(Джон Уилер ввел в научный обиход термин "Чёрные дыры")

1967 г. Американский физик Джон Уилер обрисовал пространство, которое можно скомкать, подобно листику бумаги, в бесконечно малую точку и обозначил термином "Чёрная дыра".

1974 г. Британский физик Стивен Хокинг доказал, что чёрные дыры, хоть и поглащают метерию без возврата, могут испускать излучение и в конце концов испаряться. Такое явление получило название "излучение Хокинга".

2013 г. Новейшие исследования пульсаров и квазаров, а также открытие реликтового излучения, наконец сделали возможным описать само понятие чёрных дыр. В 2013 году газовое облако G2 приблизилось на очень близкое расстояние к чёрной дыре и скорее всего будет поглощено ей, наблюдения за уникальным процессом даёт огромные возможности для новых открытий особенностей чёрных дыр.

(Массивный объект Стрелец А*, его масса больше Солнца в 4 млн раз, где подразумевается скопление звезд и образование чёрной дыры )

2017 г . Группа ученых из коллоборации нескольких стран Event Horizon Telescope, связав восемь телескопов с разных точек континентов Земли, проводили наблюдения за чёрной дырой, которая является сверхмассивным объектом и находится в галактике М87, созвездие Дева. Масса объекта 6,5 млрд (!) солнечных масс, в гигантские разы больше массивного объекта Стрелец А*, для сравнения диаметром чуть менее расстояния от Солнца до Плутона.

Наблюдения проводились в несколько этапов, начиная с весны 2017 года и в течении периодов 2018 года. Объём информации исчислялся петабайтами, которые затем следовало расшифровать и получить подлинный снимок сверхдалекого объекта. Поэтому потребовалось ещё целых два года для досканальной обработки всех данных и соединения их в одно целое.

2019 г. Данные были успешно расшифрованы и приведены в вид, получив первое в истории изображение чёрной дыры.

(Первый в истории снимок чёрной дыры в галактики М87 в созвездии Дева )

Разрешение изображения позволяет увидеть тень точки невозврата в центре объекта. Изображение получено в результате интерферометрических наблюдений со сверхдлинной базой. Это, так называемые, синхронные наблюдения одного объекта с нескольких радиотелескопов, соединенных между собой сетью и находящихся в разных частях земного шара, направленных в одну сторону.

Чем на самом деле являются чёрные дыры

Лаконичное объяснение феномена звучит так.

Чёрная дыра — это пространственно-временная область, чье гравитационное притяжение настолько велико, что её не может покинуть ни один объект, в том числе световые кванты.

Когда-то чёрная дыра была массивной звёздой. Пока термоядерные реакции поддерживают в её недрах высокое давление, всё остаётся в норме. Но со временем запас энергии истощается и небесное тело, под действием собственной гравитации, начинает сжиматься. Завершающий этап этого процесса — схлопывание звездного ядра и образование чёрной дыры.

  • 1. Выбрасывание черной дырой струи на высокой скорости

  • 2. Диск материи перерастает в чёрную дыру

  • 3. Чёрная дыра

  • 4. Детальная схема региона чёрной дыры

  • 5. Размер найденных новых наблюдений

Самая распространённая теория гласит, что подобные феномены есть в каждой галактике, в том числе и в центре нашего Млечного пути. Огромная сила притяжения дыры способна удерживать вокруг себя несколько галактик, не давая им удаляться друг от друга. «Площадь покрытия» может быть разной, всё зависит от массы звёзды, которая превратилась в чёрную дыру, и может составлять тысячи световых лет.

Радиус Шварцшильда

Главное свойство чёрной дыры — любое вещество, которое в неё попало, никогда не сможет вернуться. Это же касается и света. По своей сути дыры — это тела, которые полностью поглощают весь попадающий на них свет и не испускающие собственного. Такие объекты визуально могут казаться сгустками абсолютной темноты.

  • 1. Движущаяся материя в половину скорости света

  • 2. Фотонное кольцо

  • 3. Внутреннее фотонное кольцо

  • 4. Горизонт событий в чёрной дыре

Отталкиваясь от Общей теории относительности Эйнштейна, если тело приблизилось на критическое расстояние к центру дыры, оно уже не сможет вернуться. Это расстояние называют радиусом Шварцшильда. Что именно происходит внутри этого радиуса доподлинно неизвестно, но есть наиболее распространенная теория. Считается, что всё вещество чёрной дыры концентрируется в бесконечно малой точке, а в её центре находится объект с бесконечной плотностью, который ученые именуют сингулярным возмущением.

Как происходит падение в чёрную дыру

(На картинке чёрная дыра Стрельца А* выглядит крайне ярким скоплением света)

Не так давно, в 2011 году, ученые обнаружили газовое облако, дав ему несложное название G2, которое испускает необычные свет. Такое свечение может давать трение в газе и пыли, вызываемое действием чёрной дыры Стрельца А* и которые вращаются вокруг нее в виде аккреционного диска. Таким образом, мы становимся наблюдателями удивительного явления поглощения сверхмассивной чёрной дырой газового облака.

По последним исследованиям наибольшее сближение с черной дырой произойдет в марте 2014 года. Мы можем воссоздать картину того, как будет происходит это захватывающее зрелище.

  • 1. При первом появлении в данных газовое облако напоминает огромный шар из газа и пыли.

  • 2. Сейчас по состоянию на июнь 2013 года облако находится в десятках миллиардов километров от чёрной дыры. Оно падает в неё со скоростью 2500 км/с.

  • 3. Ожидается, что облако пройдет мимо чёрной дыры, но приливные силы, вызванные различием в притяжении, действующем на передний и задний край облака, заставят его принимать всё более вытянутую форму.

  • 4. После того, как облако будет разорвано, большая его часть, скорее всего, вольется в аккреционный диск вокруг Стрельца А*, порождая в нём ударные волны. Температура при этом подскочит до нескольких миллионов градусов.

  • 5. Часть облака упадёт прямо в чёрную дыру. Никто не знает в точности, что случится потом с этим веществом, но ожидается, что в процессе падения оно будет испускать мощные потоки рентгеновских лучей, и больше его никто не увидит.

Видео: чёрная дыра поглощает газовое облако

(Компьютерное моделирование того, как большая часть газового облака G2 будет разрушено и поглощено чёрной дырой Стрельцом А*)

Что там внутри чёрной дыры

Есть теория, которая утверждает, что чёрная дыра внутри практически пуста, а вся её масса сосредоточена в невероятно маленькой точке, находящейся в самом её центре - сингулярности.

Согласно другой теории, существующей на протяжении полувека, всё, что попадает в чёрную дыру, переходит в другую вселенную, находящуюся в самой чёрной дыре. Сейчас это теория не является основной.

И есть третья, самая современная и живучая теория, по которой всё, что попадает в чёрную дыру, растворяется в колебаниях струн на её поверхности, которую обозначают, как горизонт событий.

Так что же такое - горизонт событий? Внутрь чёрной дыры заглянуть нельзя даже сверхмощным телескопом, так как даже свет, попадая внутрь гигантской космической воронки, не имеет шансов вынырнуть назад. Всё, что можно хоть как-то рассмотреть, находится в её ближайших окрестностях.

Горизонт событий - это условная линия поверхности, из под которой ничто (ни газ, ни пыль, ни звезды, ни свет) выйти уже не сможет. И вот это и есть та самая таинственная точка невозврата в чёрных дырах Вселенной.

С. ТРАНКОВСКИЙ

Среди наиболее важных и интересных проблем современной физики и астрофизики академик В. Л. Гинзбург назвал вопросы, связанные с черными дырами (см. "Наука и жизнь" №№ 11, 12, 1999 г.). Существование этих странных объектов было предсказано более двухсот лет назад, условия, приводящие к их образованию, точно рассчитали в конце 30-х годов XX века, а вплотную астрофизика занялась ими менее сорока лет назад. Сегодня научные журналы мира ежегодно публикуют тысячи статей, посвященных черным дырам.

Образование черной дыры может происходить тремя путями.

Так принято изображать процессы, идущие в окрестностях коллапсирующей черной дыры. С течением времени (Y) пространство (X) вокруг нее (закрашенная область) сжимается, устремляясь к сингулярности.

Гравитационное поле черной дыры вносит сильнейшие искажения в геометрию пространства.

Черная дыра, невидимая в телескоп, обнаруживает себя только по своему гравитационному воздействию.

В мощном поле тяготения черной дыры происходит рождение пар частица-античастица.

Рождение пары частица-античастица в лаборатории.

КАК ОНИ ВОЗНИКАЮТ

Светящееся небесное тело, обладающее плотностью, равной плотности Земли, и диаметром, в двести пятьдесят раз превосходящим диаметр Солнца, из-за силы своего притяжения не даст своему свету достигнуть нас. Таким образом, возможно, что самые большие светящиеся тела во Вселенной именно по причине своей величины остаются невидимыми.
Пьер Симон Лаплас.
Изложение системы мира. 1796 год.

В 1783 году английский математик Джон Митчел, а спустя тринадцать лет независимо от него французский астроном и математик Пьер Симон Лаплас провели очень странное исследование. Они рассмотрели условия, при которых свет не сможет покинуть звезду.

Логика ученых была проста. Для любого астрономического объекта (планеты или звезды) можно вычислить так называемую скорость убегания, или вторую космическую скорость, позволяющую любому телу или частице навсегда его покинуть. А в физике того времени безраздельно господствовала ньютоновская теория, согласно которой свет - это поток частиц (до теории электромагнитных волн и квантов оставалось еще почти полтораста лет). Скорость убегания частиц можно рассчитать исходя из равенства потенциальной энергии на поверхности планеты и кинетической энергии тела, "убежавшего" на бескончно большое расстояние. Эта скорость определяется формулой #1#

где M - масса космического объекта, R - его радиус, G - гравитационная постоянная.

Отсюда легко получается радиус тела заданной массы (позднее получивший название "гравитационный радиус r g "), при котором скорость убегания равна скорости света:

Это значит, что звезда, сжатая в сферу радиусом r g < 2GM /c 2 , перестанет излучать - свет покинуть ее не сможет. Во Вселенной возникнет черная дыра.

Несложно рассчитать, что Солнце (его масса 2 . 10 33 г) превратится в черную дыру, если сожмется до радиуса примерно 3 километра. Плотность его вещества при этом достигнет 10 16 г/см 3 . Радиус Земли, сжатой до состояния черной дыры, уменьшился бы примерно до одного сантиметра.

Казалось невероятным, что в природе могут найтись силы, способные сжать звезду до столь ничтожных размеров. Поэтому выводы из работ Митчела и Лапласа более ста лет считались чем-то вроде математического парадокса, не имеющего физического смысла.

Строгое математическое доказательство того, что подобный экзотический объект в космосе возможен, было получено только в 1916 году. Немецкий астроном Карл Шварц-шильд, проведя анализ уравнений общей теории относительности Альберта Эйнштейна, получил интересный результат. Исследовав движение частицы в гравитационном поле массивного тела, он пришел к выводу: уравнение теряет физический смысл (его решение обращается в бесконечность) при r = 0 и r = r g .

Точки, в которых характеристики поля теряют смысл, называются сингулярными, то есть особыми. Сингулярность в нулевой точке отражает точечную, или, что то же самое, центрально-симметричную структуру поля (ведь любое сферическое тело - звезду или планету - можно представить как материальную точку). А точки, расположенные на сферической поверхности радиусом r g , образуют ту самую поверхность, с которой скорость убегания равна скорости света. В общей теории относительности она именуется сингулярной сферой Шварц-шильда или горизонтом событий (почему - станет ясно в дальнейшем).

Уже на примере знакомых нам объектов - Земли и Солнца - ясно, что черные дыры представляют собой весьма странные объекты. Даже астрономы, имеющие дело с веществом при экстремальных значениях температуры, плотности и давления, считают их весьма экзотическими, и до последнего времени далеко не все верили в их существование. Однако первые указания на возможность образования черных дыр содержались уже в общей теории относительнос-ти А. Эйнштейна, созданной в 1915 году. Английский астроном Артур Эддингтон, один из первых интерпретаторов и популяризаторов теории относительности, в 30-х годах вывел систему уравнений, описывающих внутреннее строение звезд. Из них следует, что звезда находится в равновесии под действием противополож но направленных сил тяготения и внутреннего давления, создаваемого движением частиц горячей плазмы внутри светила и напором излучения, образующегося в его недрах. А это означает, что звезда представляет собой газовый шар, в центре которого высокая температура, постепенно понижающаяся к периферии. Из уравнений, в частности, следовало, что температура поверхности Солнца составляет около 5500 градусов (что вполне соответствовало данным астрономических измерений), а в его центре должна быть порядка 10 миллионов градусов. Это позволило Эддингтону сделать пророческий вывод: при такой температуре "зажигается" термоядерная реакция, достаточная для обеспечения свечения Солнца. Физики-атомщики того времени с этим не соглашались. Им казалось, что в недрах звезды слишком "холодно": температура там недостаточна, чтобы реакция "пошла". На это взбешенный теоретик отвечал: "Поищите местечко погорячее!".

И в конечном итоге он оказался прав: в центре звезды действительно идет термоядер ная реакция (другое дело, что так называемая "стандартная солнечная модель", основанная на представлениях о термоядерном синтезе, по-видимому, оказалась неверной - см., например, "Наука и жизнь" №№ 2, 3, 2000 г.). Но тем не менее реакция в центре звезды проходит, звезда светит, а излучение, которое при этом возникает, удерживает ее в стабильном состоянии. Но вот ядерное "горючее" в звезде выгорает. Выделение энергии прекращается, излучение гаснет, и сила, сдерживающая гравитационное притяжение, исчезает. Существует ограничение на массу звезды, после которого звезда начинает необратимо сжиматься. Расчеты показывают, что это происходит, если масса звезды превышает две-три массы Солнца.

ГРАВИТАЦИОННЫЙ КОЛЛАПС

Вначале скорость сжатия звезды невелика, но его темп непрерывно возрастает, поскольку сила притяжения обратно пропорциональна квадрату расстояния. Сжатие становится необратимым, сил, способных противодействовать самогравитации, нет. Такой процесс называется гравитационным коллапсом. Скорость движения оболочки звезды к ее центру увеличивается, приближаясь к скорости света. И здесь начинают играть роль эффекты теории относительности.

Скорость убегания была рассчитана исходя из ньютоновсих представлений о природе света. С точки зрения общей теории относительности явления в окрестностях коллапсирующей звезды происходят несколько по-другому. В ее мощном поле тяготения возникает так называемое гравитационное красное смещение. Это означает, что частота излучения, исходящего от массивного объекта, смещается в сторону низких частот. В пределе, на границе сферы Шварцшильда, частота излучения становится равной нулю. То есть наблюдатель, находящийся за ее пределами, ничего не сможет узнать о том, что происходит внутри. Именно поэтому сферу Шварцшильда и называют горизонтом событий.

Но уменьшение частоты равнозначно замедлению времени, и, когда частота становится равна нулю, время останавливается. Это означает, что посторонний наблюдатель увидит очень странную картину: оболочка звезды, падающая с нарастающим ускорением, вместо того, чтобы достигнуть скорости света, останавливается. С его точки зрения, сжатие прекратится, как только размеры звезды приблизятся к гравитационному ради
усу. Он никогда не увидит, чтобы хоть одна частица "нырнула" под сферу Шварцшиль да. Но для гипотетического наблюдателя, падающего на черную дыру, все закончится в считанные мгновения по его часам. Так, время гравитационного коллапса звезды размером с Солнце составит 29 минут, а гораздо более плотной и компактной нейтронной звезды - только 1/20 000 секунды. И здесь его подстерегает неприятность, связанная с геометрией пространства-времени вблизи черной дыры.

Наблюдатель попадает в искривленное пространство. Вблизи гравитационного радиуса силы тяготения становятся бесконечно большими; они растягивают ракету с космонавтом-наблюдателем в бесконечно тонкую нить бесконечной длины. Но сам он этого не заметит: все его деформации будут соответствовать искажениям пространственно-временн ых координат. Эти рассуждения, конечно, относятся к идеальному, гипотетическому случаю. Любое реальное тело будет разорвано приливными силами задолго до подхода к сфере Шварцшильда.

РАЗМЕРЫ ЧЕРНЫХ ДЫР

Размер черной дыры, а точнее - радиус сферы Шварцшильда пропорционален массе звезды. А поскольку астрофизика никаких ограничений на размер звезды не накладывает, то и черная дыра может быть сколь угодно велика. Если она, например, возникла при коллапсе звезды массой 10 8 масс Солнца (или за счет слияния сотен тысяч, а то и миллионов сравнительно небольших звезд), ее радиус будет около 300 миллионов километров, вдвое больше земной орбиты. А средняя плотность вещества такого гиганта близка к плотности воды.

По-видимому, именно такие черные дыры находятся в центрах галактик. Во всяком случае, астрономы сегодня насчитывают около пятидесяти галактик, в центре которых, судя по косвенным признакам (речь о них пойдет ниже), имеются черные дыры массой порядка миллиарда (10 9) солнечной. В нашей Галактике тоже, видимо, есть своя черная дыра; ее массу удалось оценить довольно точно - 2,4 . 10 6 ±10% массы Солнца.

Теория предполагает, что наряду с такими сверхгигантами должны были возникать и черные мини-дыры массой порядка 10 14 г и радиусом порядка 10 -12 см (размер атомного ядра). Они могли появляться в первые мгновения существования Вселенной как проявление очень сильной неоднородности пространства-времени при колоссальной плотности энергии. Условия, которые были тогда во Вселенной, исследователи сегодня реализуют на мощных коллайдерах (ускорителях на встречных пучках). Эксперименты в ЦЕРНе, проведенные в начале этого года, позволили получить кварк-глюонную плазму - материю, существовавшую до возникновения элементарных частиц. Исследования этого состояния вещества продолжаются в Брукхевене - американском ускорительном центре. Он способен разогнать частицы до энергий, на полтора-два порядка более высоких, чем ускоритель в
ЦЕРНе. Готовящийся эксперимент вызвал нешуточную тревогу: не возникнет ли при его проведении черная мини-дыра, которая искривит наше пространство и погубит Землю?

Это опасение вызвало столь сильный резонанс, что правительство США было вынуждено созвать авторитетную комиссию для проверки такой возможности. Комиссия, состоявшая из видных исследователей, дала заключение: энергия ускорителя слишком мала, чтобы черная дыра могла возникнуть (об этом эксперименте рассказано в журнале "Наука и жизнь" № 3, 2000 г.).

КАК УВИДЕТЬ НЕВИДИМОЕ

Черные дыры ничего не излучают, даже свет. Однако астрономы научились видеть их, вернее - находить "кандидатов" на эту роль. Есть три способа обнаружить черную дыру.

1. Нужно проследить за обращением звезд в скоплениях вокруг некоего центра гравитации. Если окажется, что в этом центре ничего нет, и звезды крутятся как бы вокруг пустого места, можно достаточно уверенно сказать: в этой "пустоте" находится черная дыра. Именно по этому признаку предположили наличие черной дыры в центре нашей Галактики и оценили ее массу.

2. Черная дыра активно всасывает в себя материю из окружающего пространства. Межзвездная пыль, газ, вещество ближайших звезд падают на нее по спирали, образуя так называемый аккреционный диск, подобный кольцу Сатурна. (Именно это и пугало в брукхевенском эксперименте: черная мини-дыра, возникшая в ускорителе, начнет всасывать в себя Землю, причем процесс этот никакими силами остановить было бы нельзя.) Приближаясь к сфере Шварцшильда, частицы испытывают ускорение и начинают излучать в рентгеновском диапазоне. Это излучение имеет характерный спектр, подобный хорошо изученному излучению частиц, ускоренных в синхротроне. И если из какой-то области Вселенной приходит такое излучение, можно с уверенностью сказать - там должна быть черная дыра.

3. При слиянии двух черных дыр возникает гравитационное излучение. Подсчитано, что если масса каждой составляет около десяти масс Солнца, то при их слиянии за считанные часы в виде гравитационных волн выделится энергия, эквивалентная 1% их суммарной массы. Это в тысячу раз больше той световой, тепловой и прочей энергии, которую излучило Солнце за все время своего существования - пять миллиардов лет. Обнаружить гравитаци онное излучение надеются с помощью гравитационно-волновых обсерваторий LIGO и других, которые строятся сейчас в Америке и Европе при участии российских исследователей (см. "Наука и жизнь" № 5, 2000 г.).

И все-таки, хотя у астрономов нет никаких сомнений в существовании черных дыр, категорически утверждать, что в данной точке пространства находится именно одна из них, никто не берется. Научная этика, добросовестность исследователя требуют получить на поставленный вопрос ответ однозначный, не терпящий разночтений. Мало оценить массу невидимого объекта, нужно измерить его радиус и показать, что он не превышает шварцшильдовский. А даже в пределах нашей Галактики эта задача пока не разрешима. Именно поэтому ученые проявляют известную сдержанность в сообщениях об их обнаружении, а научные журналы буквально набиты сообщениями о тео-ретических работах и наблюдениях эффектов, способных пролить свет на их загадку.

Есть, правда, у черных дыр и еще одно свойство, предсказанное теоретически, которое, возможно, позволило бы увидеть их. Но, правда, при одном условии: масса черной дыры должна быть гораздо меньше массы Солнца.

ЧЕРНАЯ ДЫРА МОЖЕТ БЫТЬ И "БЕЛОЙ"

Долгое время черные дыры считались воплощением тьмы, объектами, которые в вакууме, в отсутствии поглощения материи, ничего не излучают. Однако в 1974 году известный английский теоретик Стивен Хокинг показал, что черным дырам можно приписать температуру, и, следовательно, они должны излучать.

Согласно представлениям квантовой механики, вакуум - не пустота, а некая "пена пространства-времени", мешанина из виртуалных (ненаблюдаемых в нашем мире) частиц. Однако квантовые флуктуации энергии способны "выбросить" из вакуума пару частица-античастица. Например, при столкновении двух-трех гамма-квантов как бы из ничего возникнут электрон и позитрон. Это и аналогичные явления неоднократно наблюдались в лабораториях.

Именно квантовые флуктуации определяют процессы излучения черных дыр. Если пара частиц, обладающих энергиями E и -E (полная энергия пары равна нулю), возникает в окрестности сферы Шварцшильда, дальнейшая судьба частиц будет различной. Они могут аннигилировать почти сразу же или вместе уйти под горизонт событий. При этом состояние черной дыры не изменится. Но если под горизонт уйдет только одна частица, наблюдатель зарегистрирует другую, и ему будет казаться, что ее породила черная дыра. При этом черная дыра, поглотившая частицу с энергией -E , уменьшит свою энергию, а с энергией E - увеличит.

Хокинг подсчитал скорости, с которыми идут все эти процессы, и пршел к выводу: вероятность поглощения частиц с отрицательной энергией выше. Это значит, что черная дыра теряет энергию и массу - испаряется. Кроме того она излучает как абсолютно черное тело с температурой T = 6 . 10 -8 M с /M кельвинов, где M с - масса Солнца (2 . 10 33 г), M - масса черной дыры. Эта несложная зависимость показывает, что температура черной дыры с массой, в шесть раз превышающей солнечную, равна одной стомиллионной доле градуса. Ясно, что столь холодное тело практически ничего не излучает, и все приведенные выше рассуждения остаются в силе. Иное дело - мини-дыры. Легко увидеть, что при массе 10 14 -10 30 граммов они оказываются нагретыми до десятков тысяч градусов и раскалены добела! Следует, однако, сразу отметить, что противоречий со свойствами черных дыр здесь нет: это излучение испускается слоем над сферой Шварцшильда, а не под ней.

Итак, черная дыра, которая казалась навеки застывшим объектом, рано или поздно исчезает, испарившись. Причем по мере того, как она "худеет", темп испарения нарастает, но все равно идет чрезвычайно долго. Подсчитано, что мини-дыры массой 10 14 граммов, возникшие сразу после Большого взрыва 10-15 миллиардов лет назад, к нашему времени должны испариться полностью. На последнем этапе жизни их температура достигает колоссальной величины, поэтому продуктами испарения должны быть частицы чрезвычайно высокой энергии. Возможно, именно они порождают в атмосфере Земли широкие амосферные ливни - ШАЛы. Во всяком случае, происхождение частиц аномально высокой энергии - еще одна важная и интересная проблема, которая может быть вплотную связана с не менее захватывающими вопросами физики черных дыр.