История создания компьютера кратко для детей. Как и когда появился самый первый компьютер в мире? Основные этапы развития компьютеров

Жизнь человек в двадцать первом веке напрямую связана с искусственным интеллектом. Знание основных вех в создании компьютеров – показатель образованного человека. Развитие компьютеров принято делить на 5 этапов — принято говорить о пяти поколениях.

1946-1954годы — вычислительные машины первого поколения

Стоит сказать, что первое поколение ЭВМ (электронных вычислительных машин) было ламповым. Ученые университета в Пенсильвании (США) разработали ЭНИАК — так назывался первый в мире компьютер. Днем, когда он официально введен в строй является 15.02.1946. При сборке аппарата было задействовано 18 тысяч электронных ламп. ЭВМ по нынешним меркам была колоссальна площадь 135 квадратных метров, а вес 30 тонн. Потребности в электроэнергии так же были велики — 150кВт.

Общеизвестный факт — создавалась эта электронная машина непосредственно для помощи в решении сложнейших задач по созданию атомной бомбы. СССР стремительно нагоняло свое отставание и в декабре 1951 года, под руководством и при непосредственном участии академика С. А. Лебедева миру была представлена самая быстрая в Европе ЭВМ. Носила она аббревиатуру МЭСМ (Малая Электронная Счетная Машина). Данный аппарат мог выполнять от 8 до 10 тысяч операций в секунду.

1954 — 1964 годы — вычислительные машины второго поколения

Следующим шагом в развитии стала разработка компьютеров, работающих на транзисторах. Транзисторами называются приборы, созданные из полупроводниковых материалов – позволяющие управлять током, идущим в цепи. Первый известный стабильно работающий транзистор был создан в Америке в 1948 году командой физиков — исследователей Шокли и Бардиным.

По скорости работы электронно-вычислительные машины существенно отличались от предшественников — скорость доходила до сотен тысяч операций в одну секунду. Уменьшились и размеры, да и потребление электрической энергии стало меньше. Также значительно увеличилась сфера использования. Происходило это за счет стремительной разработки программного обеспечения. Наш лучший компьютер – БЭСМ-6 обладала рекордным быстродействием – 1000000 операций в секунду. Разработана в 1965 году под руководством главного конструктора С. А. Лебедева.

1964 — 1971 годы — вычислительные машины третьего поколения

Основным отличием этого периода является начало применения микросхем с малой степенью интеграции. С помощью сложнейших технологий ученые смогли поместить на небольшой полупроводниковой пластине, с площадью меньше 1 сантиметра квадратного, сложные электронные схемы. Изобретение микросхем запатентовано в 1958 году. Изобретатель — Джек Килби. Применение этого революционного изобретения позволило улучшить все параметры – габариты уменьшились примерно до размеров холодильника, быстродействие увеличилось, также как и надежность.

Этот этап в развитии вычислительных машин характеризуется применением в использовании нового запоминающего устройства – магнитного диска. Мини-ЭВМ PDP-8 впервые представлена в 1965 году.

В СССР подобные версии появились гораздо позже — в 1972 году и являлись аналогами моделей, представленных на американском рынке.

1971 год — современность — вычислительные машины четвертого поколения

Инновацией в вычислительных машинах четвертого поколения является применение и использование микропроцессоров. Микропроцессоры представляют собой АЛУ (арифметически-логические устройства), помещенные на одну микросхему и имеющие высокую степень интеграции. Это значит, что микросхемы начинают занимать еще меньше места. Иными словами, микропроцессор – это маленький мозг, выполняющий миллионы операций в секунду по заложенной в него программе. Размеры, вес и потребление мощности резко уменьшились, а быстродействие достигло рекордных высот. И именно тогда в игру включился Intel.

Первый микропроцессор назывался Intel-4004 — название первого микропроцессора, собранного в 1971 году. Он имел разрядность 4 бита, но тогда являлся гигантским технологическим прорывом. Два года спустя Intel представил миру Intel-8008, имеющий восемь бит, в 1975 году появился на свет Альтаир-8800 — это первый персональный компьютер, созданный на основе Intel-8008.

Это было началом целой эры персональных компьютеров. Машину стали использоваться повсеместно в совершенно различных целях. Через год в игру вступил Apple. Проект имел большой успех, а Стив Джобс стал одним из самых известных и богатых человек на Земле.

Непререкаемым эталоном компьютера становится IBM PC. Его выпустили в 1981 году имеющим ОЗУ 1 мегабайт.

Примечательно то, что на данный момент IBM-совместимые электронно-вычислительные машины занимают примерно девяностопроцентную долю выпускаемых компьютеров! Также, нельзя не упомянуть про Pentium. Разработка первого процессора со встроенным сопроцессором завершилась успехом в 1989 году. Сейчас эта торговая марка непререкаемый авторитет в разработках и применении микропроцессоров на рынке компьютеров.

Если говорить о перспективах — то это, безусловно, развитие и внедрение новейших технологий: сверхбольших интегральных схем, магнитно-оптических элементов, даже элементов искусственного разума.

Самообучаемые электронные системы — вот обозримое будущее, называемое пятым поколением в развитии компьютеров.

Человек стремится стереть барьер в общении с компьютером. Очень долго и, к сожалению, неудачно работала над этим Япония, но это уже тема совершенно другой статьи. На данный момент все проекты находятся только в разработке, но с современными темпами развития – это недалекое будущее. Настоящее время – время, когда вершится история!

Поделиться.

В данной статье описаны основные этапы развития компьютеров. Описаны основные направления развития компьютерных технологий и причины их этого развития.

Основные этапы развития компьютеров

В ходе эволюции компьютерных технологий были разработаны сотни разных компьютеров. Многие из них давно забыты, в то время как влияние других на современные идеи оказалось весьма значительным. В этой статье мы дадим краткий обзор некоторых ключевых исторических моментов, чтобы лучше понять, каким образом разработчики дошли до концепции современных компьютеров. Мы рассмотрим только основные моменты развития, оставив многие подробности за скобками. Компьютеры, которые мы будем рассматривать, представлены в таблице ниже.

Основные этапы истории развития компьютеров:

Год выпуска Название компьютера Создатель Примечания
1834 Аналитическая машина Бэббидж Первая попытка построить цифровой компьютер
1936 Z1 Зус Первая релейная вычислительная машина
1943 COLOSSUS Британское правительство Первый электронный компьютер
1944 Mark I Айкен Первый американский многоцелевой компьютер
1946 ENIAC I Экерт/Моушли С этой машины начинается история современных компьютеров
1949 EDSAC Уилкс Первый компьютер с программами, хранящимися в памяти
1951 Whirlwind I МТИ Первый компьютер реального времени
1952 IAS Фон Нейман Этот проект используется в большинстве современных компьютеров
1960 PDP-1 DEC Первый мини-компьютер (продано 50 экземпляров)
1961 1401 IBM Очень популярный маленький компьютер
1962 7094 IBM Очень популярная небольшая вычислительная машина
1963 В5000 Burroughs Первая машина, разработанная для языка высокого уровня
1964 360 IBM Первое семейство компьютеров
1964 6600 CDC Первый суперкомпьютер для научных расчетов
1965 PDP-8 DEC Первый мини-компьютер массового потребления (продано 50 000 экземпляров)
1970 PDP-11 DEC Эти мини-компьютеры доминировали на компьютерном рынке в 70-е годы
1974 8080 Intel Первый универсальный 8-разрядный компьютер на микросхеме
1974 CRAY-1 Cray Первый векторный суперкомпьютер
1978 VAX DEC Первый 32-разрядный суперминикомпьютер
1981 IBM PC IBM Началась эра современных персональных компьютеров
1981 Osbome-1 Osborne Первый портативный компьютер
1983 Lisa Apple Первый ПК с графическим пользовательским интерфейсом
1985 386 Intel Первый 32-разрядный предшественник линейки Pentium
1985 MIPS MIPS Первый компьютер RISC
1987 SPARC Sun Первая рабочая станция RISC на основе процессора SPARC
1990 RS6000 IBM Первый суперскалярный компьютер
1992 Alpha DEC Первый 64-разрядный ПК
1993 Newton Apple Первый карманный компьютер

Всего из истории можно выделить 6 этапов развития компьютеров: поколение механических компьютеров, компьютеры на электронных лампах (такие, как ENIAC), транзисторные компьютеры (IBM 7094), первые компьютеры на интегральных схемах (IBM 360), персональные компьютеры (линейки с ЦП Intel) и, так называемые, невидимые компьютеры.

Нулевое поколение - механические компьютеры (1642-1945)

Первым человеком, создавшим счетную машину, был французский ученый Блез Паскаль (1623-1662), в честь которого назван один из языков программирования. Паскаль сконструировал эту машину в 1642 году, когда ему было всего 19 лет, для своего отца, сборщика налогов. Это была механическая конструкция с шестеренками и ручным приводом. Счетная машина Паскаля могла выполнять только операции сложения и вычитания.

Тридцать лет спустя великий немецкий математик Готфрид Вильгельм Лейбниц (1646-1716) построил другую механическую машину, которая помимо сложения и вычитания могла выполнять операции умножения и деления. В сущности, Лейбниц три века назад создал подобие карманного калькулятора с четырьмя функциями.

Еще через 150 лет профессор математики Кембриджского Университета, Чарльз Бэббидж (1792-1871), изобретатель спидометра, разработал и сконструировал разностную машину . Эта механическая машина, которая, как и машина Паскаля, могла лишь складывать и вычитать, подсчитывала таблицы чисел для морской навигации. В машину был заложен только один алгоритм - метод конечных разностей с использованием полиномов. У этой машины был довольно интересный способ вывода информации: результаты выдавливались стальным штампом на медной дощечке, что предвосхитило более поздние средства ввода-вывода - перфокарты и компакт-диски.

Хотя его устройство работало довольно неплохо, Бэббиджу вскоре наскучила машина, выполнявшая только один алгоритм. Он потратил очень много времени, большую часть своего семейного состояния и еще 17 000 фунтов, выделенных правительством, на разработку аналитической машины. У аналитической машины было 4 компонента: запоминающее устройство (память), вычислительное устройство, устройство ввода (для считывания перфокарт), устройство вывода (перфоратор и печатающее устройство). Память состояла из 1000 слов по 50 десятичных разрядов; каждое из слов содержало переменные и результаты. Вычислительное устройство принимало операнды из памяти, затем выполняло операции сложения, вычитания, умножения или деления и возвращало полученный результат обратно в память. Как и разностная машина, это устройство было механическим.

Преимущество аналитической машины заключалось в том, что она могла выполнять разные задания. Она считывала команды с перфокарт и выполняла их. Некоторые команды приказывали машине взять 2 числа из памяти, перенести их в вычислительное устройство, выполнить над ними операцию (например, сложить) и отправить результат обратно в запоминающее устройство. Другие команды проверяли число, а иногда совершали операцию перехода в зависимости от того, положительное оно или отрицательное. Если в считывающее устройство вводились перфокарты с другой программой, то машина выполняла другой набор операций. То есть в отличие от разностной аналитическая машина могла выполнять несколько алгоритмов.

Поскольку аналитическая машина программировалась на элементарном ассемблере, ей было необходимо программное обеспечение. Чтобы создать это программное обеспечение, Бэббидж нанял молодую женщину - Аду Августу Ловлейс (Ada Augusta Lovelace), дочь знаменитого британского поэта Байрона. Ада Ловлейс была первым в мире программистом. В ее честь назван современный язык программирования - Ada.

К несчастью, подобно многим современным инженерам, Бэббидж никогда не отлаживал компьютер. Ему нужны были тысячи и тысячи шестеренок, сделанных с такой точностью, которая в XIX веке была недоступна. Но идеи Бэббиджа опередили его эпоху, и даже сегодня большинство современных компьютеров по конструкции сходны с аналитической машиной. Поэтому справедливо будет сказать, что Бэббидж был дедушкой современного цифрового компьютера.

В конце 30-х годов немец Конрад Зус (Konrad Zuse) сконструировал несколько автоматических счетных машин с использованием электромагнитных реле. Ему не удалось получить денежные средства от правительства на свои разработки, потому что началась война. Зус ничего не знал о работе Бэббиджа, его машины были уничтожены во время бомбежки Берлина в 1944 году, поэтому его работа никак не повлияла на будущее развитие компьютерной техники. Однако он был одним из пионеров в этой области.

Немного позже счетные машины были сконструированы в Америке. Машина Джона Атанасова (John Atanasoff) была чрезвычайно развитой для того времени. В ней использовалась бинарная арифметика и информационные емкости, которые периодически обновлялись, чтобы избежать уничтожения данных. Современная динамическая память (ОЗУ) работает по точно такому же принципу. К несчастью, эта машина так и не стала действующей. В каком-то смысле Атанасов был похож на Бэббиджа - мечтатель, которого не устраивали технологии своего времени.

Компьютер Джорджа Стибитса (George Stibbitz) действительно работал, хотя и был примитивнее, чем машина Атанасова. Стибитс продемонстрировал свою машину на конференции в Дартмутском колледже в 1940 году. На этой конференции присутствовал Джон Моушли (John Mauchley), ничем не примечательный на тот момент профессор физики из университета Пенсильвании. Позднее он стал очень известным в области компьютерных разработок.

Пока Зус, Стибитс и Атанасов разрабатывали автоматические счетные машины, молодой Говард Айкен (Howard Aiken) в Гарварде упорно проектировал ручные счетные машины в рамках докторской диссертации. После окончания исследования Айкен осознал важность автоматических вычислений. Он пошел в библиотеку, прочитал о работе Бэббиджа и решил создать из реле такой же компьютер, который Бэббиджу не удалось создать из зубчатых колес.

Работа над первым компьютером Айкена «Mark I» была закончена в 1944 году. Компьютер имел 72 слова по 23 десятичных разряда каждое и мог выполнить любую команду за 6 секунд. В устройствах ввода-вывода использовалась перфолента. К тому времени, как Айкен закончил работу над компьютером «Mark II», релейные компьютеры уже устарели. Началась эра электроники.

Первое поколение - электронные лампы (1945-1955)

Стимулом к созданию электронного компьютера стала Вторая мировая война. В начале войны германские подводные лодки разрушали британские корабли. Германские адмиралы посылали на подводные лодки по радио команды, и хотя англичане могли перехватывать эти команды, проблема была в том, что радиограммы были закодированы с помощью прибора под названием ENIGMA , предшественник которого был спроектирован изобретателем-дилетантом и бывшим президентом США Томасом Джефферсоном.

В начале войны англичанам удалось приобрести ENIGMA у поляков, которые, в свою очередь, украли ее у немцев. Однако, чтобы расшифровать закодированное послание, требовалось огромное количество вычислений, и их нужно было произвести сразу после перехвата радиограммы. Поэтому британское правительство основало секретную лабораторию для создания электронного компьютера под названием COLOSSUS. В создании этой машины принимал участие знаменитый британский математик Алан Тьюринг. COLOSSUS работал уже в 1943 году, но, так как британское правительство полностью контролировало этот проект и рассматривало его как военную тайну на протяжении 30 лет, COLOSSUS не стал базой для дальнейшего развития компьютеров. Мы упомянули о нем только потому, что это был первый в мире электронный цифровой компьютер.

Вторая мировая война повлияла на развитие компьютерной техники и в США. Армии нужны были таблицы, которые использовались при нацеливании тяжелой артиллерии. Сотни женщин нанимались для расчетов на ручных счетных машинах и заполнения полей этих таблиц (считалось, что женщины аккуратнее в расчетах, чем мужчины). Тем не менее этот процесс требовал много времени, и часто случались ошибки.

Джон Моушли, который был знаком с работами Атанасова и Стибблитса, понимал, что армия заинтересована в счетных машинах. Он потребовал от армии финансирования работ по созданию электронного компьютера. Требование было удовлетворено в 1943 году, и Моушли со своим студентом Дж. Преспером Экертом (J. Presper Eckert) начали конструировать электронный компьютер, который они назвали ENIAC (Electronic Numerical Integrator and Computer - электронный цифровой интегратор и калькулятор). ENIAC состоял из 18 000 электровакуумных ламп и 1500 реле, весил 30 тонн и потреблял 140 киловатт электроэнергии. У машины было 20 регистров, каждый из которых мог содержать 10-разрядное десятичное число. (Десятичный регистр - это память очень маленького объема, которая может вмещать число до какого-либо определенного максимального количества разрядов, что-то вроде одометра, запоминающего километраж пройденного автомобилем пути.) В ENIAC было установлено 6000 многоканальных переключателей и имелось множество кабелей, протянутых к разъемам.

Работа над машиной была закончена в 1946 году, когда она уже была не нужной - по крайней мере, для достижения первоначально поставленных целей.

Поскольку война закончилась, Моушли и Экерту позволили организовать школу, где они рассказывали о своей работе коллегам-ученым. В этой школе и зародился интерес к созданию больших цифровых компьютеров.

После появления школы за конструирование электронных вычислительных машин взялись другие исследователи. Первым рабочим компьютером был EDSAC (1949 год). Эту машину сконструировал Морис Уилкс в Кембриджском университете. Далее - JOHNIAC в корпорации Rand, ILLIAC в Университете Иллинойса, MANIAC в лаборатории Лос-Аламоса и WEIZAC в Институте Вайцмана в Израиле.

Экерт и Моушли вскоре начали работу над машиной EDVAC (Electronic Discrete Variable Computer - электронная дискретная параметрическая машина). К несчастью, этот проект закрылся, когда они ушли из университета, чтобы основать компьютерную корпорацию в Филадельфии (Силиконовой долины тогда еще не было). После ряда слияний эта компания превратилась в Unisys Corporation.

Экерт и Моушли хотели получить патент на изобретение цифровой вычислительной машины. После нескольких лет судебной тяжбы было вынесено решение, что патент недействителен, так как цифровую вычислительную машину изобрел Атанасов, хотя он ее и не запатентовал.

В то время как Экерт и Моушли работали над машиной EDVAC, один из участников проекта ENIAC, Джон Фон Нейман, поехал в Институт специальных исследований в Принстоне, чтобы сконструировать собственную версию EDVAC под названием IAS (Immediate Address Storage - память с прямой адресацией). Фон Нейман был гением в тех же областях, что и Леонардо да Винчи. Он знал много языков, был специалистом в физике и математике, обладал феноменальной памятью: он помнил все, что когда-либо слышал, видел или читал. Он мог дословно процитировать по памяти текст книг, которые читал несколько лет назад. Когда фон Нейман стал интересоваться вычислительными машинами, он уже был самым знаменитым математиком в мире.

Фон Нейман вскоре осознал, что создание компьютеров с большим количеством переключателей и кабелей требует длительного времени и очень утомительно. Он пришел к мысли, что программа должна быть представлена в памяти компьютера в цифровой форме, вместе с данными. Он также отметил, что десятичная арифметика, используемая в машине ENIAC, где каждый разряд представлялся десятью электронными лампами A включена и 9 выключены), должна быть заменена параллельной бинарной арифметикой. Между прочим, Атанасов пришел к аналогичному выводу лишь спустя несколько лет.

Основной проект, который фон Нейман описал вначале, известен сейчас как фон-неймановская вычислительная машина . Он был использован в EDSAC, первой машине с программой в памяти, и даже сейчас, более чем полвека спустя, является основой большинства современных цифровых компьютеров. Сам замысел и машина IAS оказали очень большое влияние на дальнейшее развитие компьютерной техники, поэтому стоит кратко описать проект фон Неймана. Стоит иметь в виду, что хоть проект и связан с именем фон Неймана, в его разработке приняли деятельное участие другие ученые - в частности, Голдстайн. Архитектуру этой машины иллюстрирует следующий рисунок:

Машина фон Неймана состояла из пяти основных частей: памяти, арифметико-логического устройства, устройства управления, а также устройств ввода-вывода. Память включала 4096 слов размером по 40 бит, бит - это 0 или 1. Каждое слово содержало или 2 команды по 20 бит, или целое число со знаком на 40 бит. 8 бит указывали на тип команды, а остальные 12 бит определяли одно из 4096 слов. Арифметический блок и блок управления составляли «мозговой центр» компьютера. В современных машинах эти блоки сочетаются в одной микросхеме, называемой центральным процессором (ЦП) .

Внутри арифметико-логического устройства находился особый внутренний регистр на 40 бит, так называемый аккумулятор. Типичная команда добавляла слово из памяти в аккумулятор или сохраняла содержимое аккумулятора в памяти. Эта машина не выполняла арифметические операции с плавающей точкой, поскольку Фон Нейман считал, что любой сведущий математик способен держать плавающую точку в голове.

Примерно в то же время, когда Фон Нейман работал над машиной IAS, исследователи МТИ разрабатывали свой компьютер Whirlwind I. В отличие от IAS, ENIAC и других машин того же типа со словами большой длины, машина Whirlwind I имела слова по 16 бит и предназначалась для работы в реальном времени. Этот проект привел к изобретению Джеем Форрестером (Jay Forrester) памяти на магнитном сердечнике, а затем и первого серийного мини-компьютера.

В то время IBM была маленькой компанией, производившей перфокарты и механические машины для сортировки перфокарт. Хотя фирма IBM частично финансировала проект Айкена, она не интересовалась компьютерами и только в 1953 году построила компьютер 701, через много лет после того, как компания Экерта и Моушли со своим компьютером UNIVAC стала номером один на компьютерном рынке.

В 701 было 2048 слов по 36 бит, каждое слово содержало две команды. 701 стал первым компьютером, лидирующим на рынке в течение десяти лет. Через три года появился компьютер 704, у которого было 4 Кбайт памяти на магнитных сердечниках, команды по 36 бит и процессор с плавающей точкой. В 1958 году компания IBM начала работу над последним компьютером на электронных лампах, 709, который по сути представлял собой усложненную версию 704.

Второе поколение - транзисторы (1955-1965)

Транзистор был изобретен сотрудниками лаборатории Bell Laboratories Джоном Бардином Oohn Bardeen), Уолтером Браттейном (Walter Brattain) и Уильямом Шокли (William Shockley), за что в 1956 году они получили Нобелевскую премию в области физики. В течение десяти лет транзисторы совершили революцию в производстве компьютеров, и к концу 50-х годов компьютеры на вакуумных лампах уже безнадежно устарели. Первый компьютер на транзисторах был построен в лаборатории МТИ (Массачусетским Техническим Институтом). Он содержал слова из 16 бит, как и Whirlwind I. Компьютер назывался ТХ-0 (Transistorized experimental computer 0 - экспериментальная транзисторная вычислительная машина 0) и предназначался только для тестирования будущей машины ТХ-2.

Машина ТХ-2 не имела большого значения, но один из инженеров этой лаборатории, Кеннет Ольсен (Kenneth Olsen), в 1957 году основал компанию DEC (Digital Equipment Corporation - корпорация по производству цифровой аппаратуры), чтобы производить серийную машину, сходную с ТХ-0. Эта машина, PDP-1, появилась только через четыре года главным образом потому, что те, кто финансировал DEC, считали производство компьютеров невыгодным. Поэтому компания DEC продавала в основном небольшие электронные платы.

Компьютер PDP-1 появился только в 1961 году. Он имел 4096 слов по 18 бит и быстродействие 200 000 команд в секунду. Этот параметр был в два раза меньше, чем у 7090, транзисторного аналога 709. PDP-1 был самым быстрым компьютером в мире в то время. PDP-1 стоил 120 000 долларов, в то время как 7090 стоил миллионы. Компания DEC продала десятки компьютеров PDP-1, и так появилась компьютерная промышленность.

Одну из первых машин модели PDP-1 отдали в МТИ, где она сразу привлекла внимание некоторых молодых исследователей, подающих большие надежды. Одним из нововведений PDP-1 был дисплей размером 512 х 512 пикселов, на котором можно было рисовать точки. Вскоре студенты МТИ составили специальную программу для PDP-1, чтобы играть в «Войну миров» - первую в мире компьютерную игру.

Через несколько лет компания DEC разработала модель PDP-8, 12-разрядный компьютер. PDP-8 стоил гораздо дешевле, чем PDP-1 A6 000 долларов). Главное нововведение - единственная шина (omnibus), показанная на рис. 1.5. Шина - это набор параллельно соединенных проводов для связи компонентов компьютера. Это нововведение радикально отличало PDP-8 от IAS. Такая структура с тех пор стала использоваться во всех компьютерах. Компания DEC продала 50 000 компьютеров модели PDP-8 и стала лидером на рынке мини-компьютеров.

Как уже отмечалось, с изобретением транзисторов компания IBM построила транзисторную версию 709 - 7090, а позднее - 7094. У этой версии время цикла составляло 2 микросекунды, а память состояла из 32 536 слов по 36 бит. 7090 и 7094 были последними компьютерами типа ENIAC, но они широко использовались для научных расчетов в 60-х годах прошлого века.

Компания IBM выпускала также компьютеры 1401 для коммерческих расчетов. Эта машина могла считывать и записывать магнитные ленты и перфокарты и распечатывать результат так же быстро, как и 7094, но при этом стоила дешевле. Для научных вычислений она не подходила, но зато была очень удобна для ведения деловых записей.

У 1401 не было регистров и фиксированной длины слова. Память содержала 4000 байт по 8 бит (в более поздних моделях объем увеличился до немыслимых в то время 16 000 байт). Каждый байт содержал символ в 6 бит, административный бит и бит для указания конца слова. У команды MOVE, например, есть исходный адрес и адрес пункта назначения. Эта команда перемещает байты из первого адреса во второй, пока бит конца слова не примет значение 1.

В 1964 году компания CDC (Control Data Corporation) выпустила машину 6600, которая работала почти на порядок быстрее, чем 7094. Этот компьютер для сложных расчетов пользовался большой популярностью, и компания CDC пошла «в гору». Секрет столь высокого быстродействия заключался в том, что внутри ЦПУ (центрального процессора) находилась машина с высокой степенью параллелизма. У нее было несколько функциональных устройств для сложения, умножения и деления, и все они могли работать одновременно. Для того чтобы машина быстро работала, требовалось составить хорошую программу, а приложив некоторые усилия, можно было сделать так, чтобы машина выполняла 10 команд одновременно.

Внутри машины 6600 было встроено несколько маленьких компьютеров. Центральный процессор, таким образом, производил только подсчет чисел, а остальные функции (управление работой машины, а также ввод и вывод информации) выполняли маленькие компьютеры. Некоторые принципы работы устройства 6600 используются и в современных компьютерах.

Разработчик компьютера 6600 Сеймур Крей (Seymour Cray) был легендарной личностью, как и фон Нейман. Он посвятил всю свою жизнь созданию очень мощных компьютеров, которые сейчас называют суперкомпьютерами . Среди них можно назвать 6600, 7600 и Сгау-1. Сеймур Крей также является автором известного «алгоритма покупки автомобилей»: вы идете в магазин, ближайший к вашему дому, показываете на машину, ближайшую к двери, и говорите: «Я беру эту». Этот алгоритм позволяет тратить минимум времени на не очень важные дела (покупку автомобилей) и позволяет большую часть времени на важные (разработку суперкомпьютеров).

Следует упомянуть еще один компьютер - Burroughs B5000. Разработчики машин PDP-1, 7094 и 6600 занимались только аппаратным обеспечением, стараясь снизить его стоимость (DEC) или заставить работать быстрее (IBM и CDC). Программное обеспечение не менялось. Производители В5000 пошли другим путем. Они разработали машину с намерением программировать ее на языке Algol 60 (предшественнике языков С и Java), сконструировав аппаратное обеспечение так, чтобы упростить задачу компилятора. Так появилась идея, что при
разработке компьютера нужно также учитывать и программное обеспечение. Но вскоре эта идея была забыта.

Третье поколение - интегральные схемы (1965-1980)

Изобретение в 1958 году Робертом Нойсом (Robert Noyce) кремниевой интегральной схемы означало возможность размещения на одной небольшой микросхеме десятков транзисторов. Компьютеры на интегральных схемах были меньшего размера, работали быстрее и стоили дешевле, чем их предшественники на транзисторах.

К 1964 году компания IBM лидировала на компьютерном рынке, но существовала одна большая проблема: компьютеры 7094 и 1401, которые она выпускала, были несовместимы друг с другом. Один из них предназначался для сложных расчетов, в нем использовалась двоичная арифметика на регистрах по 36 бит, во втором применялась десятичная система счисления и слова разной длины. У многих покупателей были оба этих компьютера, и им не нравилось, что они совершенно несовместимы.

Когда пришло время заменить эти две серии компьютеров, компания IBM сделала решительный шаг. Она выпустила линейку транзисторных компьютеров System/360, которые были предназначены как для научных, так и для коммерческих расчетов. Линейка System/360 имела много нововведений. Это было целое семейство компьютеров для работы с одним языком (ассемблером). Каждая новая модель была больше по возможностям, чем предыдущая. Компания смогла заменить 1401 на 360 (модель 30), а 7094 - на 360 (модель 75). Модель 75 была больше по размеру, работала быстрее и стоила дороже, но программы, написанные для одной из них, могли использоваться в другой. На практике программы, написанные для маленькой модели, выполнялись большой моделью без особых затруднений. Но в случае переноса программного обеспечения с большой машины на маленькую могло не хватить памяти. И все же создание такой линейки компьютеров было большим достижением. Идея создания семейств компьютеров вскоре стала очень популярной, и в течение нескольких лет большинство компьютерных компаний выпустили серии сходных машин с разной стоимостью и функциями. В табл. ниже показаны некоторые параметры первых моделей из семейства 360. О других моделях этого семейства мы расскажем далее.

Первые модели серии IBM 360:

Параметры Модель 30 Модель 40 Модель 50 Модель 65
Относительная производительность 1 3,5 10 21
Время цикла (нс) 1000 625 500 250
Максимальный объем памяти (байт) 65536 262144 262144 524288
Количество байтов, вызываемых из памяти за 1 цикл 1 2 4 16
Максимальное число каналов данных 3 3 4 6

Еще одно нововведение в 360 - мультипрограммирование . В памяти компьютера могло находиться одновременно несколько программ, и пока одна программа ждала, когда закончится процесс ввода-вывода, другая выполнялась. В результате ресурсы процессора расходовались более рационально.

Компьютер 360 был первой машиной, которая могла полностью эмулировать работу других компьютеров. Маленькие модели могли эмулировать 1401, а большие - 7094, поэтому программисты могли оставлять свои старые программы без изменений и использовать их в работе с 360. Некоторые модели 360 выполняли программы, написанные для 1401, гораздо быстрее, чем сама 1401, поэтому стала бессмысленной переделка программ.

Компьютеры серии 360 могли эмулировать работу других компьютеров, потому что создавались с использованием микропрограммирования. Нужно было написать всего лишь три микропрограммы: одну - для системы команд 360, другую - для системы команд 1401, третью - для системы команд 7094. Требование гибкости стало одной из главных причин применения микропрограммирования.

Компьютеру 360 удалось разрешить дилемму между двоичной и десятичной системами счисления: у этого компьютера было 16 регистров по 32 бит для бинарной арифметики, но память состояла из байтов, как у 1401. В 360 использовались такие же команды для перемещения записей разного размера из одной части памяти в другую, как ив 1401.

Объем памяти у 360 составлял 2 24 байт (16 Мбайт). В те времена такой объем памяти казался огромным. Линейка 360 позднее сменилась линейкой 370, затем 4300, 3080, 3090. У всех этих компьютеров была сходная архитектура. К середине 80-х годов 16 Мбайт памяти стало недостаточно, и компании IBM пришлось частично отказаться от совместимости, чтобы перейти на 32-разрядную адресацию, необходимую для памяти объемом в 2 32 байт.

Можно было бы предположить, что поскольку у машин были слова в 32 бит и регистры, у них вполне могли бы быть и адреса в 32 бит. Но в то время никто не мог даже представить себе компьютер с объемом памяти в 16 Мбайт. Обвинять IBM в отсутствии предвидения все равно что обвинять современных производителей персональных компьютеров в том, что адреса в них всего по 32 бит. Возможно, через несколько лет объем памяти компьютеров будет составлять намного больше 4 Гбайт, и тогда адресов в 32 бит будет недостаточно.

Мир мини-компьютеров сделал большой шаг вперед в третьем поколении вместе с производством линейки компьютеров PDP-11, последователей PDP-8 со словами по 16 бит. Во многих отношениях компьютер PDP-11 был младшим братом 360, a PDP-1 - младшим братом 7094. И у 360, и у PDP-11 были регистры, слова, память с байтами, и в обеих линейках компьютеры имели разную стоимость и разные функции. PDP-1 широко использовался, особенно в университетах, и компания DEC продолжала лидировать среди производителей мини-компьютеров.

Четвертое поколение - сверхбольшие интегральные схемы (1980-?)

Появление сверхбольших интегральных схем (СБИС) в 80-х годах позволило помещать на одну плату сначала десятки тысяч, затем сотни тысяч и, наконец, миллионы транзисторов. Это привело к созданию компьютеров меньшего размера и более быстродействующих. До появления PDP-1 компьютеры были настолько велики и дороги, что компаниям и университетам приходилось иметь специальные отделы (вычислительные центры ). К 80-м годам цены упали так сильно, что возможность приобретать компьютеры появилась не только у организаций, но и у отдельных людей. Началась эра персональных компьютеров.

Персональные компьютеры требовались совсем для других целей, чем их предшественники. Они применялись для обработки слов, электронных таблиц, а также для выполнения приложений с высоким уровнем интерактивности (например, игр), с которыми большие компьютеры не справлялись.

Первые персональные компьютеры продавались в виде комплектов. Каждый комплект содержал печатную плату, набор интегральных схем, обычно включающий схему Intel 8080, несколько кабелей, источник питания и иногда 8-дюймовый дисковод. Сложить из этих частей компьютер покупатель должен был сам. Программное обеспечение к компьютеру не прилагалось. Покупателю приходилось писать программное обеспечение самому. Позднее появилась операционная система СР/М, написанная Гари Килдаллом (Gary Kildall) для Intel 8080. Эта действующая операционная система помещалась на дискету, она включала в себя систему управления файлами и интерпретатор для выполнения пользовательских команд, которые набирались с клавиатуры.

Еще один персональный компьютер, Apple (а позднее и Apple II), был разработан Стивом Джобсом (Steve Jobs) и Стивом Возняком (Steve Wozniak). Этот компьютер стал чрезвычайно популярным среди домашних пользователей и школ, что в мгновение ока сделало компанию Apple серьезным игроком на рынке.

Наблюдая за тем, чем занимаются другие компании, компания IBM, лидирующая тогда на компьютерном рынке, тоже решила заняться производством персональных компьютеров. Но вместо того, чтобы конструировать компьютер на основе отдельных компонентов IBM «с нуля», что заняло бы слишком много времени, компания предоставила одному из своих работников, Филипу Эстриджу (Philip Estridge), большую сумму денег, приказала ему отправиться куда-нибудь подальше от вмешивающихся во все бюрократов главного управления компании, находящегося в Армонке (шт. Нью-Йорк), и не возвращаться, пока не будет создан действующий персональный компьютер. Эстридж открыл предприятие достаточно далеко от главного управления компании (во Флориде), взял Intel 8088 в качестве центрального процессора и создал персональный компьютер из разнородных компонентов. Этот компьютер (IBM PC) появился в 1981 году и стал самым покупаемым компьютером в истории.

Однако компания IBM сделала одну вещь, о которой позже пожалела. Вместо того чтобы держать проект машины в секрете (или, по крайней мере, оградить себя патентами), как она обычно делала, компания опубликовала полные проекты, включая все электронные схемы, в книге стоимостью 49 долларов. Эта книга была опубликована для того, чтобы другие компании могли производить сменные платы для IBM PC, что повысило бы совместимость и популярность этого компьютера. К несчастью для IBM, как только проект IBM PC стал широко известен, многие компании начали делать клоны PC и часто продавали их гораздо дешевле, чем IBM (поскольку все составные части компьютера можно было легко приобрести). Так началось бурное производство персональных компьютеров.

Хотя некоторые компании (такие, как Commodore, Apple и Atari) производили персональные компьютеры с использованием своих процессоров, а не процессоров Intel, потенциал производства IBM PC был настолько велик, что другим компаниям приходилось пробиваться с трудом. Выжить удалось только некоторым из них, и то лишь потому, что они специализировались в узких областях, например, в производстве рабочих станций или суперкомпьютеров.

Первая версия IBM PC была оснащена операционной системой MS-DOS, которую выпускала тогда еще крошечная корпорация Microsoft. IBM и Microsoft совместно разработали последовавшую за MS-DOS операционную систему OS/2, характерной чертой которой был графический пользовательский интерфейс (Graphical User Interface, GUI), сходный с интерфейсом Apple Macintosh. Между тем компания Microsoft также разработала собственную операционную систему Windows, которая работала на основе MS-DOS, на случай, если OS/2 не будет иметь спроса. OS/2 действительно не пользовалась спросом, a Microsoft успешно продолжала выпускать операционную систему Windows, что послужило причиной грандиозного раздора между IBM и Microsoft. Легенда о том, как крошечная компания Intel и еще более крошечная, чем Intel, компания Microsoft умудрились свергнуть IBM, одну из самых крупных, самых богатых и самых влиятельных корпораций в мировой истории, подробно излагается в бизнес-школах всего мира.

Первоначальный успех процессора 8088 воодушевил компанию Intel на его дальнейшие усовершенствования. Особо примечательна версия 386, выпущенная в 1985 году, - это первый представитель линейки Pentium. Современные процессоры Pentium гораздо быстрее процессора 386, но с точки зрения архитектуры они просто представляют собой его более мощные версии.

В середине 80-х годов на смену CISC (Complex Instruction Set Computer - компьютер с полным набором команд) пришел компьютер RISC (Reduced Instruction Set Computer - компьютер с сокращенным набором команд). RISC-команды были проще и работали гораздо быстрее. В 90-х годах появились суперскалярные процессоры, которые могли выполнять много команд одновременно, часто не в том порядке, в котором они располагаются в программе.

Вплоть до 1992 года персональные компьютеры были 8-, 16- и 32-разрядными. Затем появилась революционная 64-разрядная модель Alpha производства DEC - самый что ни на есть настоящий RISC-компьютер, намного превзошедший по показателям производительности все прочие ПК. Впрочем, тогда коммерческий успех этой модели оказался весьма скромным - лишь через десятилетие 64-разрядиые машины приобрели популярность, да и то лишь в качестве профессиональных серверов.

Пятое поколение - невидимые компьютеры

В 1981 году правительство Японии объявило о намерениях выделить национальным компаниям 500 миллионов долларов на разработку компьютеров пятого поколения на основе технологий искусственного интеллекта, которые должны были потеснить «тугие на голову» машины четвертого поколения. Наблюдая за тем, как японские компании оперативно захватывают рыночные позиции в самых разных областях промышленности - от фотоаппаратов до стереосистем и телевизоров, - американские и европейские производители в панике бросились требовать у своих правительств аналогичных субсидий и прочей поддержки. Однако несмотря на большой шум, японский проект разработки компьютеров пятого поколения в конечном итоге показал свою несостоятельность и был аккуратно «задвинут в дальний ящик». В каком-то смысле эта ситуация оказалась близка той, с которой столкнулся Беббидж: идея настолько опередила свое время, что для ее реализации не нашлось адекватной технологической базы.

Тем не менее то, что можно назвать пятым поколением компьютеров, все же материализовалось, но в весьма неожиданном виде - компьютеры начали стремительно уменьшаться. Модель Apple Newton, появившаяся в 1993 году, наглядно доказала, что компьютер можно уместить в корпусе размером с кассетный плеер. Рукописный ввод, реализованный в Newton, казалось бы, усложнил дело, но впоследствии пользовательский интерфейс подобных машин, которые теперь называются персональными электронными секретарями (Personal Digital Assistants, PDA ), или просто карманными компьютерами , был усовершенствован и приобрел широкую популярность. Многие карманные компьютеры сегодня не менее мощны, чем обычные ПК двух-трехлетней давности.

Но даже карманные компьютеры не стали по-настоящему революционной разработкой. Значительно большее значение придается так называемым «невидимым» компьютерам - тем, что встраиваются в бытовую технику, часы, банковские карточки и огромное количество других устройств. Процессоры этого типа предусматривают широкие функциональные возможности и не менее широкий спектр вариантов применения за весьма умеренную цену. Вопрос о том, можно ли свести эти микросхемы в одно полноценное поколение (а существуют
они с 1970-х годов), остается дискуссионным. Факт в том, что они на порядок расширяют возможности бытовых и других устройств. Уже сейчас влияние невидимых компьютеров на развитие мировой промышленности очень велико, и с годами оно будет возрастать. Одной из особенностей такого рода компьютеров является то, что их аппаратное и программное обеспечение зачастую проектируется методом соразработки .

Заключение

Итак, к первому поколению причисляются компьютеры на электронных лампах (такие, как ENIAC ), ко второму - транзисторные машины (IBM 7094 ), к третьему - первые компьютеры на интегральных схемах (IBM 360 ), к четвертому - персональные компьютеры (линейки ЦП Intel ). Что же касается пятого поколения, то оно больше ассоциируется не с конкретной архитектурой, а со сменой парадигмы. Компьютеры будущего будут встраиваться во все мыслимые и немыслимые устройства и за счет этого действительно станут невидимыми. Они
прочно войдут в повседневную жизнь - будут открывать двери, включать лампы, распределять деньги и выполнять тысячи других обязанностей. Эта модель, разработанная Марком Вайзером (Mark Weiser) в поздний период его деятельности, первоначально получила название повсеместной компьютеризации , но в настоящее время не менее распространен термин «всепроникающая компьютеризация ». Это явление обещает изменить мир не менее радикально, чем промышленная революция.

По материалам книги Э. Танненбаума «Архитектура компьютера», 5 издание.

Одно из величайших изобретений своего времени. Миллиарды людей используют компьютеры в своей повседневной жизни во всем мире.

На протяжении десятилетий, компьютер превратился из очень дорогого и медленного устройства, в нынешние крайне умные машины с невероятной вычислительной мощностью.

Ни одному человеку не приписывают изобретение компьютера, многие считают, что Конрад Цузе и его машина Z1 была первым в длинной череде нововведений, которые дали нам компьютер. Конрад Цузе был немцем, который получил известность за создание первого свободно программируемого механического вычислительного устройства в 1936 году. Z1 Цузе был создан с акцентом на 3 основных элемента, которые все еще используются в современных калькуляторах. Позже, Конрад Цузе создал Z2 и Z3.

Первые компьютеры из серии Mark были построены в Гарварде. МАРК создали в 1944 году, и этот компьютер был величиной с комнату, имеющей размер 55 футов в длину и 8 футов в высоту. МАРК мог выполнять широкий спектр расчетов. Он стал успешным изобретением и был использован ВМС США, эксплуатировался до 1959 года.

Компьютер ENIAC был одним из самых важных достижений в вычислительной технике. Он был заказан во время Второй мировой войны американскими военными. В этом компьютере использовались вакуумные трубки вместо электродвигателей и рычагов для быстрых вычислений. Его скорость была в тысячи раз быстрее, чем у любого другого вычислительного устройства того времени. Этот компьютер был огромен и имел общую стоимость $ 500,000. ENIAC был в эксплуатации до 1955 года.

ОЗУ или Random Access Memory был введен в 1964 году. Первый ОЗУ был металлоискательной пластиной, расположенной рядом с вакуумной трубкой, которая обнаружилвала разницу в электрических зарядах. Это был легкий способ хранения компьютерных команд.

Существовало много нововведений в 1940 году. Манчестер разработал телекоммуникации Research Establishment. Это был первый компьютер, использовавший хранимую программу, и она начала функционировать в 1948 году. Манчестер MARK I продолжал жить в 1951 году и показал огромный прогресс.

UNIVAC был построен создателями ENIAC. Это был самый быстрый и самый инновационный компьютер способный обрабатывать множество вычислений. Это был шедевр своего времени и получил высокую оценку общественности.

IBM, первый персональный компьютер, широко используемый и доступный для людей. IBM 701 был первым компьютером общего назначения, разработанный IBM. Новый компьютерный язык называемый «Фортран» был использован в новой 704 модели. IBM 7090 также имел большой успех, и доминировал как офисный компьютер в течение следующих 20 лет. В конце 1970-х и в 1980 IBM разработала персональный компьютер, известный как ПК. IBM оказала огромное влияние на компьютеры, используемые сегодня.

С ростом рынка персональных компьютеров в начале и середине 1980-х годов, многие компании поняли, что графический интерфейс более дружественен к пользователю. Это привело к разработке операционной системы под названием Windows, Майкрософт. Первая версия была названа Windows 1.0 и позже пришел Windows 2.0 и 3.0. Microsoft становится все более популярным сегодня.

Сегодня компьютеры являются чрезвычайно мощным и более доступным, чем когда-либо. Они практически проникли в каждый аспект нашей жизни. Они используется в качестве мощного инструмента общения и торговли. Будущее у компьютеров огромно.

В конце XIX века Герман Холлерит в Америке изобрел счетно-перфорационные машины. В них использовались перфокартыдля хранения числовой информации.

Каждая такая машина могла выполнять только одну определенную программу, манипулируя с перфокартами и числами, пробитыми на них.

Счетно-перфорационные машины осуществляли перфорацию, сортировку, суммирование, вывод на печать числовых таблиц. На этих машинах удавалось решать многие типовые задачи статистической обработки, бухгалтерского учета и другие.

Г. Холлерит основал фирму по выпуску счетно-перфорационных машин, которая затем была преобразована в фирму IBM - ныне самого известного в мире производителя компьютеров.

Непосредственными предшественниками ЭВМ были релейные вычислительные машины.

К 30-м годам XX века получила большое развитие релейная автоматика, которая позволяла кодировать информацию в двоичном виде.

В процессе работы релейной машины происходят переключения тысяч реле из одного состояния в другое.

В первой половине XX века бурно развивалась радиотехника. Основным элементом радиоприемников и радиопередатчиков в то время были электронно-вакуумные лампы.

Электронные лампы стали технической основой для первых электронно-вычислительных машин (ЭВМ).

Первая ЭВМ - универсальная машина на электронных лампах построена в США в 1945 году.

Эта машина называлась ENIAC (расшифровывается так: электронный цифровой интегратор и вычислитель). Конструкторами ENIAC были Дж.Моучли и Дж.Эккерт.

Скорость счета этой машины превосходила скорость релейных машин того времени в тысячу раз.

Первый электронный компьютер ENIAC программировался с помощью штеккерно-коммутационного способа, то есть программа строилась путем соединения проводниками отдельных блоков машины на коммутационной доске.

Эта сложная и утомительная процедура подготовки машины к работе делала ее неудобной в эксплуатации.

Основные идеи, по которым долгие годы развивалась вычислительная техника, были разработаны крупнейшим американским математиком Джоном фон Нейманом

В 1946 году в журнале «Nature» вышла статья Дж. фон Неймана, Г. Голдстайна и А. Беркса «Предварительное рассмотрение логической конструкции электронного вычислительного устройства».

В этой статье были изложены принципы устройства и работы ЭВМ. Главный из них - принцип хранимой в памяти программы, согласно которому данные и программа помещаются в общую память машины.

Принципиальное описание устройства и работы компьютера принято называть архитектурой ЭВМ . Идеи, изложенные в упомянутой выше статье, получили название «архитектура ЭВМ Дж. фон Неймана».

В 1949 году была построена первая ЭВМ с архитектурой Неймана - английская машина EDSAC.

Годом позже появилась американская ЭВМ EDVAC. Названные машины существовали в единственных экземплярах. Серийное производство ЭВМ началось в развитых странах мира в 50-х годах.

В нашей стране первая ЭВМ была создана в 1951 году. Называлась она МЭСМ - малая электронная счетнаямашина. Конструктором МЭСМ былСергей Алексеевич Лебедев

Под руководством С.А. Лебедева в 50-х годах были построены серийные ламповые ЭВМ БЭСМ-1 (большая электронная счетная машина), БЭСМ-2, М-20.

В то время эти машины были одними из лучших в мире.

В 60-х годах С.А.Лебедев руководил разработкой полупроводниковых ЭВМ БЭСМ-ЗМ, БЭСМ-4, М-220, М-222.

Выдающимся достижением того периода была машина БЭСМ-6. Это первая отечественная и одна из первых в мире ЭВМ с быстродействием 1 миллион операций в секунду. Последующие идеи и разработки С.А. Лебедева способствовали созданию более совершенных машин следующих поколений.

Электронно-вычислительную технику принято делить на поколения

Смены поколений чаще всего были связаны со сменой элементной базы ЭВМ, с прогрессом электронной техники.

Это всегда приводило к росту вычислительной мощности ЭВМ, то есть быстродействия и объема памяти.

Но это не единственное следствие смены поколений. При таких переходах, происходили существенные изменения в архитектуре ЭВМ, расширялся круг задач, решаемых на ЭВМ, менялся способ взаимодействия между пользователем и компьютером.

Первое поколение ЭВМ - ламповые машины 50-х годов. Скорость счета самых быстрых машин первого поколения доходила до 20 тысяч операций в секунду (ЭВМ М-20).

Для ввода программ и данных использовались перфоленты и перфокарты.

Поскольку внутренняя память этих машин была невелика (могла вместить в себя несколько тысяч чисел и команд программы), то они, главным образом, использовались для инженерных и научных расчетов, не связанных с переработкой больших объемов данных.

Это были довольно громоздкие сооружения, содержавшие в себе тысячи ламп, занимавшие иногда сотни квадратных метров, потреблявшие электроэнергию в сотни киловатт

Программы для таких машин составлялись на языках машинных команд. Это довольно трудоемкая работа.

Поэтому программирование в те времена было доступно немногим.

В 1949 году в США был создан первый полупроводниковый прибор, заменяющий электронную лампу. Он получил название транзистор. Транзисторы быстро внедрялись в радиотехнику.

Второе поколение ЭВМ

В 60-х годах транзисторы стали элементной базой для ЭВМ второго поколения .

Переход на полупроводниковые элементы улучшил качество ЭВМ по всем параметрам: они стали компактнее, надежнее, менее энергоемкими

Быстродействие большинства машин достигло десятков и сотен тысяч операций в секунду.

Объем внутренней памяти возрос в сотни раз по сравнению с ЭВМ первого поколения.

Большое развитие получили устройства внешней (магнитной) памяти: магнитные барабаны, накопители на магнитных лентах.

Благодаря этому появилась возможность создавать на ЭВМ информационно-справочные, поисковые системы.

Такие системы связаны с необходимостью длительно хранить на магнитных носителях большие объемы информации.

Во времена второго поколения активно стали развиваться языки программирования высокого уровня. Первыми из них были ФОРТРАН, АЛГОЛ, КОБОЛ.

Составление программы перестало зависеть от модели машины, сделалось проще, понятнее, доступнее.

Программирование как элемент грамотности стало широко распространяться, главным образом среди людей с высшим образованием.

Третье поколение ЭВМ создавалось на новой элементной базе - интегральных схемах. С помощью очень сложной технологии специалисты научились монтировать на маленькой пластине из полупроводникового материала, площадью менее 1 см, достаточно сложные электронные схемы.

Их назвали интегральными схемами (ИС)

Первые ИС содержали в себе десятки, затем - сотни элементов (транзисторов, сопротивлений и др.).

Когда степень интеграции (количество элементов) приблизилась к тысяче, их стали называть большими интегральными схемами - БИС; затем появились сверхбольшие интегральные схемы - СБИС.

ЭВМ третьего поколения начали производиться во второй половине 60-х годов, когда американская фирма IBM приступила к выпуску системы машин IBM-360. Это были машины на ИС.

Немного позднее стали выпускаться машины серии IBM-370, построенные на БИС.

В Советском Союзе в 70-х годах начался выпуск машин серии ЕС ЭВМ (Единая Система ЭВМ) по образцу IBM-360/370.

Переход к третьему поколению связан с существенными изменениями архитектуры ЭВМ.

Появилась возможность выполнять одновременно несколько программ на одной машине. Такой режим работы называется мультипрограммным (многопрограммным) режимом.

Скорость работы наиболее мощных моделей ЭВМ достигла нескольких миллионов операций в секунду.

На машинах третьего поколения появился новый тип внешних запоминающих устройств - магнитные диски .

Как и на магнитных лентах, на дисках можно хранить неограниченное количество информации.

Но накопители на магнитных дисках (НМД) работают гораздо быстрее, чем НМЛ.

Широко используются новые типы устройств ввода-вывода: дисплеи , графопостроители .

В этот период существенно расширились области применения ЭВМ. Стали создаваться базы данных, первые системы искусственного интеллекта, системы автоматизированного проектирования (САПР) и управления (АСУ).

В 70-е годы получила мощное развитие линия малых (мини) ЭВМ. Своеобразным эталоном здесь стали машины американской фирмы DEC серии PDP-11.

В нашей стране по этому образцу создавалась серия машин СМ ЭВМ (Система Малых ЭВМ). Они меньше, дешевле, надежнее больших машин.

Машины этого типа хорошо приспособлены для целей управления различными техническими объектами: производственными установками, лабораторным оборудованием, транспортными средствами. По этой причине их называют управляющими машинами.

Во второй половине 70-х годов производство мини-ЭВМ превысило производство больших машин.

Четвертое поколение ЭВМ

Очередное революционное событие в электронике произошло в 1971 году, когда американская фирма Intel объявила о создании микропроцессора .

Микропроцессор - это сверхбольшая интегральная схема, способная выполнять функции основного блока компьютера - процессора

Микропроцессор - это миниатюрный мозг, работающий по программе, заложенной в его память.

Первоначально микропроцессоры стали встраивать в различные технические устройства: станки, автомобили, самолеты . Такие микропроцессоры осуществляют автоматическое управление работой этой техники.

Соединив микропроцессор с устройствами ввода-вывода, внешней памяти, получили новый тип компьютера: микроЭВМ

МикроЭВМ относятся к машинам четвертого поколения.

Существенным отличием микроЭВМ от своих предшественников являются их малые габариты (размеры бытового телевизора) и сравнительная дешевизна.

Это первый тип компьютеров, который появился в розничной продаже.

Самой популярной разновидностью ЭВМ сегодня являются персональные компьютеры

Появление феномена персональных компьютеров связано с именами двух американских специалистов: Стива Джобса и Стива Возняка.

В 1976 году на свет появился их первый серийный ПК Apple-1, а в 1977 году - Apple-2.

Сущность того, что такое персональный компьютер, кратко можно сформулировать так:

ПК - это микроЭВМ с «дружественным» к пользователю аппаратным и программным обеспечением.

В аппаратном комплекте ПК используется

    цветной графический дисплей,

    манипуляторы типа «мышь»,

    «джойстик»,

    удобная клавиатура,

    удобные для пользователя компактные диски (магнитные и оптические).

Программное обеспечение позволяет человеку легко общаться с машиной, быстро усваивать основные приемы работы с ней, получать пользу от компьютера, не прибегая к программированию.

Общение человека и ПК может принимать форму игры с красочными картинками на экране, звуковым сопровождением.

Неудивительно, что машины с такими свойствами быстро приобрели популярность, причем не только среди специалистов.

ПК становится такой же привычной бытовой техникой, как радиоприемник или телевизор. Их выпускают огромными тиражами, продают в магазинах.

С 1980 года «законодателем мод» на рынке ПК становится американская фирма IBM.

Ее конструкторам удалось создать такую архитектуру, которая стала фактически международным стандартом на профессиональные ПК. Машины этой серии получили название IBM PC (Personal Computer).

В конце 80-х - начале 90-х годов большую популярность приобрели машины фирмы Apple Corporation марки Macintosh. В США они широко используются в системе образования.

Появление и распространение ПК по своему значению для общественного развития сопоставимо с появлением книгопечатания.

Именно ПК сделали компьютерную грамотность массовым явлением.

С развитием этого типа машин появилось понятие «информационные технологии», без которых уже становится невозможным обойтись в большинстве областей деятельности человека.

Есть и другая линия в развитии ЭВМ четвертого поколения. Это - суперЭВМ. Машины этого класса имеют быстродействие сотни миллионов и миллиарды операций в секунду.

Первой суперЭВМ четвертого поколения была американская машина ILLIAC-4, за ней появились CRAY, CYBER и др.

Из отечественных машин к этой серии относится многопроцессорный вычислительный комплекс ЭЛЬБРУС.

ЭВМ пятого поколения - это машины недалекого будущего. Основным их качеством должен быть высокий интеллектуальный уровень.

Машины пятого поколения - это реализованный искусственный интеллект.

Многое уже практически сделано в этом направлении.

Сегодня без персонального компьютера невозможно представить жизни, а ведь не так давно люди жили без компьютеров и их всё устраивало. Давайте взглянем на историю появления самого первого персонального компьютера.

Роль персонального компьютера в нашей современной жизни переоценить невозможно. Именно сейчас человечество наконец приблизилось к своей заветной мечте — иметь умных механических помощников в любой сфере жизни. Персональный компьютер стал просто незаменим для работы, развлечений или отдыха. Наследники первых, собранных в подвалах и гаражах компьютеров, стоят ныне в шикарных офисах, стильных конторах и в наших уютных квартирах. Следует отметить, что не сразу персональный компьютер пробил себе дорогу на рынок, не всегда успешной была судьба отдельных людей и корпораций, сделавших достаточно много для современного развития компьютерной техники.

Как все начиналось

Герман Холлерит в конце XIX века в Америке придумал счетно-перфорационные машины. В них применялись перфокарты для сохранения числовой информации. Г. Холлерит является основателем фирмы, которая выпускает счетно-перфорационные машины. IBM - сегодня самая популярная корпорация в мире по производству компьютеров.
Первая ЭВМ была изобретена в США в 1945 году. Это была универсальная машина на электронных лампах, ее сконструировали Дж.Моучли и Дж.Эккерт.

Всю электронно-вычислительную технику можно поделить на поколения. Смены поколений в основном связаны с прогрессом электронной техники. Итак:
— 1-е поколение ЭВМ - это ламповые машины 50-х годов.Для ввода программ и данных использовались перфоленты и перфокарты.
— 2-е поколение ЭВМ — транзисторы стали элементарной базой в 60-х годах. ЭВМ теперь надежнее,компактнее, менее энергоемкие.
— 3-е поколение ЭВМ — создано на интегральных схемах.Появляются магнитные диски, новый тип запоминающих устройств.
— 4-е поколение ЭВМ — создан микропроцессор в 1971 году фирмой Intel.Соединив микропроцессор с устройствами внешней памяти,ввода-вывода, изобрели микроЭВМ.

Персональные компьютеры

Самые популярные ЭВМ на сегодняшний день — это персональные компьютеры.
Появление ПК связывают с именами двух американских специалистов: Стива Джобса и Стива Возняка. В 1976 году появляется их первый ПК -1, а в 1977 году - Apple-2.

Персональный компьютер - это микроЭВМ с лояльным к пользователю аппаратным и программным обеспечением.Программное обеспечение дает возможность человеку легко общаться с компьютером и извлекать от него пользу. ПК теперь является такой же обыденной бытовой техникой, как например, радиоприемник. С 1980 года самой популярной на рынке ПК является американская фирма IB M. Спустя еще десять лет, становятся знаменитыми машины фирмы Apple Corporatio.

Появление ПК по своему значению для общественного развития можно сопоставить разве что с возникновением книгопечатания. Именно ПК внесли компьютерную грамотность в массы.С развитием данного вида электронных машин возникло понятие «информационные технологии» и без них уже в принципе человечество не может обойтись в любой сфере своей жизнедеятельности.