Примеры буронабивных свай фундаментов. Буронабивные сваи: технология устройства и расчет. Методы определения несущей способности сваи

Расчет свайного фундамента выполняется в зависимости от его типа. Важно понимать, что расчет буронабивных свай будет отличаться от вычислений для винтовых. Но во всех случаях требуется выполнить предварительную подготовку, которая включает в себя сбор нагрузок и геологические изыскания.

Изучение характеристик грунта

Несущая способность буронабивной сваи будет во многом зависеть от прочностных характеристик основания . В первую очередь стоит выяснить прочностные показатели грунтов на участке. Для этого пользуются двумя методами: ручным бурением или отрывкой шурфов. Грунт разрабатывается на глубину на 50 см больше, чем предполагаемая отметка фундамента.





Сбор нагрузок

Перед расчетом буронабивного фундамента также необходимо выполнить сбор нагрузок от всех вышележащих конструкций. Потребуется два отдельных вычисления:

Это необходимо потому, что отдельно будет выполнен расчет ростверка свайного фундамента и характеристик свай.

При сборе нагрузок необходимо уесть все элементы здания, а также временные нагрузки, к которым относится масса снегового покрова на крыше, а также полезная нагрузка на перекрытие от людей, мебели и оборудования.

Для расчета свайно-ростверкового фундамента составляется таблица, в которую вносится информация о массе конструкций. Чтобы рассчитать эту таблицу, можно пользоваться следующей информацией:

Конструкция
Каркасная стена с утеплителем, толщиной 15 см 30-50 кг/кв.м.
Деревянная стена толщиной 20 см 100 кг/кв.м.
Деревянная стена толщиной 30 см 150 кг/кв.м.
Кирпичная стена толщиной 38 см 684 кг/кв.м.
Кирпичная стена толщиной 51 см 918 кг/кв.м.
Гипсокартонные перегородки 80 мм без утепления 27,2 кг/кв.м.
Гипсокартонные перегородки 80 мм с утеплением 33,4 кг/кв.м.
Междуэтажные перекрытия по деревянным балкам с укладкой утеплителя 100-150 кг/кв.м.
Междуэтажные перекрытия из железобетона толщиной 22 см 500 кг/кв.м.
Пирог кровли с использованием покрытия из
листов металлической черепицы и металлических 60 кг/кв.м.
керамочерепицы 120 кг/кв.м.
битумной черепицы 70 кг/кв.м.
Временные нагрузки
От мебели, людей и оборудования 150 кг/кв.м.
от снега определяется по табл. 10.1 СП "Нагрузки и воздействия" в зависимости от климатического района

Собственный вес фундаментов и ростверка определяется в зависимости от геометрических размеров. Сначала требуется вычислить объем конструкции. Плотность железобетона при этом принимается равной 2500 кг/куб.м. Чтобы получить массу элемента, нужно объем умножить на плотность.

Каждую составляющую нагрузки нужно умножить на специальный коэффициент, который повышает надежность. Его подбирают в зависимости от материала и способа изготовления. Точное значение можно найти в таблице:

Расчет сваи

На этом этапе вычислений необходимо определиться со следующими характеристиками:

  • шаг свай;
  • длина сваи до края ростверка;
  • сечение.

Чаще всего размеры сечения определяют заранее, а остальные показатели подбирают исходя их имеющихся данных. Таким образом, результатом расчета должны стать расстояние между сваями и их длина.


Всю массу здания, полученную на предыдущем этапе, требуется разделить на общую длину ростверка. При этом учитываются как наружные, так и внутренние стены. Результатом деления станет нагрузка на каждый пог.м фундаментов.

Несущую способность одного элемента фундамента можно найти по формуле:
P = (0,7 R S) + (u 0,8 fin li), где:

  • P - нагрузка, которую без разрушения выдерживает одна свая;
  • R - прочность почвы, которую можно найти по таблицам, представленным ниже после изучения состава грунта;
  • S - площадь сечения сваи в нижней части, для круглой сваи формула выглядит следующим образом: S = 3,14*r2/2 (здесь r - это радиус окружности);
  • u - периметр элемента фундамента, можно найти по формуле периметра окружности для круглого элемента;
  • fin - сопротивление почвы по боковым сторонам элемента фундамента, см. таблицу для глинистых грунтов выше;
  • li - толщина слоя грунта, соприкасающегося с боковой поверхностью сваи (находят для каждого слоя почвы отдельно);
  • 0,7 и 0,8 - это коэффициенты.

Шаг фундаментов рассчитывается по более простой формуле: l = P/Q, где Q-это масса дома на пог.м фундамента, найденная ранее. Чтобы найти расстояние между буронабивными сваями в свету, из найденной величины просто вычитают ширину одного элемента фундамента.

Армирование буронабивных свай выполняется в соответствии с нормативными документами. Арматурные каркасы состоят из рабочей арматуры и хомутов. Первая берет на себя изгибающие воздействия, а вторые обеспечивают совместную работу отдельных стержней.

Каркасы для буронабивных свай подбираются в зависимости от нагрузки и размеров сечения. Рабочая арматура устанавливается в вертикальном положении, для нее используют стальные стержни D от 10 до 16 мм. При этом выбирают материал класса А400 (с периодическим профилем). Для изготовления поперечных хомутов потребуется закупить гладкую арматуру класса А240. D = минимум 6-8 мм.


Каркасы буронабивных свай устанавливаются так, чтобы металл не доходил за край бетона на 2-3 см. Это нужно для обеспечения защитного слоя, который предотвратить появление коррозии (ржавчины на арматуре).

Размеры ростверка и его армирование

Элемент проектируется так же, как и ленточный фундамент. Высота ростверка зависит от того, насколько нужно поднять здание, а также от его массы. Самостоятельно можно выполнить расчет элемента, который опирается вровень с землей, или немного заглублен в нее. Основа расчетов висячего варианта слишком сложна для неспециалиста, поэтому такую работу стоит доверить профессионалам.


Пример правильной вязки арматурного каркаса

Размеры ростверка вычисляются так: В = М / (L R), где:

  • B - это минимальное расстояние для опирания ленты (ширина обвязки);
  • М - масса здания без учета веса свай;
  • L - длина обвязки;
  • R - прочность почвы у поверхности земли.

Арматурные каркасы обвязки подбираются так же, как и для здания на ленточном фундаменте. В ростверке требуется установить рабочее армирование (вдоль ленты), горизонтальное поперечное, вертикальное поперечное.

Общую площадь сечения рабочего армирования подбирают так, чтобы она была не меньше 0,1% от сечения ленты. Чтобы подобрать сечение каждого стержня и их количество (четное), пользуются сортаментом арматуры. Также необходимо учитывать указания СП по наименьшим размерам.

Пример расчета

Чтобы лучше понять принцип выполнения вычислений, стоит изучить пример расчета. Здесь рассматривается одноэтажное здание из кирпича с вальмовой крышей из металлочерепицы. В здании предполагается наличие двух перекрытий. Оба изготавливаются из железобетона толщиной 220 мм. Размеры дома в плане 6 на 9 метров. Толщина стен составляет 380 мм. Высота этажа - 3,15 м (от пола до потолка - 2,8 м), общая длина внутренних перегородок - 10 м. Внутренних стен нет. На участке найдена тугопластичная супесь, пористость которой - 0,5. Глубина залегания этой супеси - 3,1 м. Отсюда по таблицам находим: R = 46 тонн/кв.м., fin = 1,2 тонн/кв.м. (для расчетов среднюю глубину принимаем равной 1 м). Снеговая нагрузка берется по значениям Москвы.

Сбор нагрузок делаем в форме таблицы. При этом не забываем про коэффициенты надежности.

Вид нагрузки Расчет
Стены из кирпича периметр стен = 6+6+9+9 = 30 м;
площадь стен = 30 м*3м = 90 м2;
масса стен = (90 м2* 684)*1,2 = 73872 кг
Перегородки изготовленные из гипсокартона не утепленные высотой 2,8 м 10м*2,8*27,2кг*1,2 = 913,92 кг
Перекрытие из ж/б плит толщиной 220 мм, 2 шт. 2шт*6м*9м*500 кг/м2 *1,3 = 70200 кг
Кровля 6 м*9 м*60 кг*1,2 /соs30ᵒ (уклон крыши) = 4470 кг
Нагрузка от мебели и людей на 2 перекрытия 2*6м*9м*150кг*1,2 = 19440 кг
Снег 6м*9м*180кг*1,4/cos30° = 15640 кг
ИТОГО: 184535,92 кг ≈ 184536 кг

Предварительно назначаем ростверк шириной 40 см, высотой 50 см. Длину сваи - 3000 мм, D сечения = 500 мм. Используем примерный шаг свай 1500 мм.
Чтобы рассчитать общее количество опор нужно 30 м (длину ростверка) поделить на 1,5 м (шаг свай) и прибавить 1 шт. При необходимости значение округляется до целого числа в сторону уменьшения. Получаем 21 шт.

Площадь одной сваи = 3,14 0,52/4 = 0,196 кв.м., периметр = 2 3,14 0,5 = 3,14 м.

Найдем массу ростверка: 0,4м 0,5 м 30 м 2500 кг/куб.м. 1,3 = 19500 кг.

Найдем массу свай: 21 3 м 0,196 кв.м. 2500 кг/куб.м. 1,3 = 40131 кг.

Найдем массу всего здания: сумма из таблицы + масса свай + масса ростверка = 244167 кг или 244 тонн.

Для расчета потребуется нагрузка на пог.м ростверка = Q = 244 т/30 м = 8,1 т/м.

Расчет свай. Пример

Находим допустимое нагружение на каждый элемент по формуле указанной ранее:
P = (0,7 46 тонн/кв.м. 0,196 кв.м.) + (3,14 м 0,8 1,2 тонн/кв.м. 3 м) = 15,35 т.
Шаг свай принимается равным P/Q = 15,35/8,1= 1,89 м. Округляем до 1,9 м. Если шаг получается слишком большим или маленьким, нужно проверить еще несколько вариантов, меняя при этом длину и диаметр фундаментов.

Для каркасов применяются пруты D = 14 мм и хомуты D = 8 мм.

Расчет ростверка. Пример

Нужно посчитать массу здания без учета свай. Отсюда М = 204 тонн.
Ширина ленты принимается равной М / (L R) = 204/ (30 75) = 0,09 м.
Такой ростверк использовать нельзя. Свесы стен кирпичного здания с фундамента не должны превышать 4 см. Ширину назначаем конструктивно 400 мм. Высота остается равной 500 мм.

Армирование ростверка свайного фундамента:

  • Рабочее 0,1%*0,4*0,5 = 0,0002 кв.м. = 2 кв.см. Здесь достаточно будет 4 стержней диаметром 8 мм, но по нормативным требованиям используем минимально возможный диаметр 12 мм;
  • Горизонтальные хомуты - 6 мм;
  • Вертикальные хомуты - 6 мм.

Выполнение расчетов займет определенный промежуток времени. Но с их помощью можно сберечь деньги и время в процессе строительства.

Также вы можете рассчитать фундамент при помощи онлайн калькулятора. Просто нажмите на ссылку Расчет фундамента столбчатого типа и следуйте инструкциям.

Бурение буронабивных свай стало популярным благодаря быстроте и удобству их применения.

Буронабивные железобетонные трубы отличаются параметрами: от 0.5 до 1.5 м — в диаметре и до 40 м – в длину. Они эффективны при больших нагрузках.

Технология обустройства свайного фундамента

Перед тем, как рассмотреть пример исчисления буронабивных опор, необходимо познакомиться с технологией обустройства свайного основания. Для начала необходимо выполнить бурение скважины, а затем заполнить ее бетонным раствором.

Если строительство ведется на плотных грунтах, тогда можно обойтись без обустройства опалубки. Во всех оставшихся случаях опалубка обязательна. Она может быть сделана из рубероида или трубы из асбестоцемента.

Так как опора подвергается нагрузке на разрыв со стороны почвы, ее полость должна армироваться . С этой целью применяют прутки стальной арматуры. Их необходимо установить вертикально, а затем соединить по горизонтали более узкими стержнями.

Для установки вертикальных стержней используются прутки 10-12 мм. Чтобы сделать железобетонные трубы жесткими, применяется горизонтальное крепление гладкой арматурой 6-8 мм. Шаг между ними должен составлять около 1 метра.

Если планируется обустройство ростверка, необходимо оставить припуск прутьев, чтобы они торчали из опор. Выступающие элементы потом выступят в качестве связки свай с опорами.

При строительстве дома монтаж буронабивных свай происходит рядами под всеми несущими стенами, обязательно под углами сооружения, в местах пресечения стен и между ними. Чтобы выполнить расчет буронабивного фундамента, определить количество и диаметр опор, а также расстояние между ними, необходимо учесть вес дома.

Чем дом массивнее, тем больше свай потребуется с меньшим шагом.

Существуют правила минимальных показателей схемы монтажа опор. Например, они не должны устанавливаться чаще, чем через три значения собственного диаметра. Слишком густое расположение опор снижает показатели несущей способности.

К примеру, при диаметре опорных элементов в 40 см, наименьший шаг между опорами должен быть равен 120 см.

С чего начать расчет?

Решив использовать при строительстве собственного дома буронабивную технологию, необходимо выполнить следующие аналитические манипуляции:

  • оценить структуру почвы;
  • рассчитать нагрузку будущей постройки;
  • вычислить площадь подошвы основания;
  • рассчитать размер буронабивных свай и их количество;
  • рассчитать расстояние между буронабивными сваями под бурение трубы.

Что касается грунта, то, как указывает таблица, наилучшими показателями несущей способности отличается скальная и полускальная почва. Остальные типы грунта (глинистый, песчаный, супесь, суглинок и т.д.) характеризуются высокой степенью пучения, то есть способностью выталкивать фундамент во время промерзания почвы.

Для расчета нагрузки, которую будет давать будущая постройка на грунт и фундамент, необходимо просуммировать количество стройматериалов , которые будут использованы в строительстве здания. С этой целью применяется таблица их среднего удельного веса.

Для начала вычисляется квадратура каждого строительного элемента. Затем нужно посмотреть вес каждого стройматериала и умножить на квадратуру.

Например, крыша из листовой стали весит 20-30 кг/м 2 . При квадратуре кровли 100 м 2 получится, что ее общий вес составляет 2000—3000 кг.

Чтобы выполнить расчет буронабивных свай, их количества и параметров необходимо учесть площадь их подошвы. Возьмем следующий пример: диаметр трубы равен 300 мм, ее подошва с расширением имеет размер 500 мм.

Площадь сваи S = pi х D2/4= 3,14×50×50/4=1960 см 2 . Если давление на фундамент F равна 100000 кг, R = 4, тогда согласно формуле R=F/(S×n), где n – количество опор, получится общее количество свай 13 шт.

Для каждого типа грунта значение несущей способности свайной трубы будет разным. Для быстрого и точного вычисления параметров применяется специальная таблица . В ней указано соотношение расчетного сопротивления почвы, диаметр сваи и примерные показатели ее несущей способности.

Например, параметры для опоры диаметром 400 мм на гравелистых грунтах плотностью 4.5 кг/см 2 составляет 5600 кг.

Расчет несущей способности сваи

Расчет несущей способности, которую демонстрируют забивные сваи, базируется не только на ее диаметре и площади подошвы, но также и марке бетона. Возьмем такой пример: сечение буронабивной трубы равно 20×20 см, а площадь поперечного сечения — 400 см 2 . При использовании бетона марки М100, такая опора сможет выдержать 100 кг/см 2 . Это означает, что допустимый вес на одну опору составляет 40 т.

В таком случае, забивные сваи демонстрируют показатели несущей способности гораздо больше, чем несущая способность почвы. По этой причине, рассчитывая количество опор и несущей способности фундамента, стоит учитывать плотность почвы. В среднем она составляет 6 кг/см 2 , при условии заложения свай на глубину ниже уровня замерзания грунта (от 2 м) и при условии сухого состояния почвы.

Диаметр сваи влияет на опорную площадь основания и показатели ее несущей способности.

Для расчета буронабивных свай с учетом упомянутых критериев, используется таблица, в которой показано соотношение плотности бетона, диаметра опоры, ее площади, несущей способности. Например таблица указывает, что при диаметре сваи 15 см, площади опоры 177 см 2 и объеме бетона 0.0354 м 2 , несущая способность опоры будет равна 1062 кг.

Технологическая карта методики «CFA»

Технологическая модель применения буронабивных свай, как альтернативу традиционному бурению предлагает технологию «CFA», которая не требует обсадные трубы. Бурение способом «CFA» оправдано на территориях с плотной застройкой, где обычное бурение может привести к конструктивным изменениям в фундаментах соседних зданий.

Метод «CFA» носит второе название – метод полого шнека . Технологическая карта метода «CFA» предусматривает бурение без извлечения почвы.

Бурение почвы по «CFA» происходит постепенно. После достижения проектных показателей, технологическая карта указывает, что скважина заливается через полный шнек с применением бетононасоса. Одновременно с этим осуществляется процесс извлечения шнека из выемки.

Технологическая карта предусматривает, что после заливки монтируются армокаркасы для придания конструкции жесткости.

Использование метода «CFA» при строительстве зданий исключает вибрацию грунта, а подачу бетона наносом под высоким давлением делает забивные сваи более крепкими за счет усиления стенок конструкции. Особые требования выставляются к армированному каркасу по методу «CFA». Среди них:

  • монтаж каркаса должен проводиться так, как указывает технологическая карта и проектная документация;
  • внешний диаметр конструкции должен быть меньше шнека;
  • по всей длине каркаса необходим монтаж пластиковых центраторов;
  • как показывает технологическая модель, нижняя часть каркаса должна иметь форму конуса. Для этого требуется монтаж последнего кольца диаметром меньше предыдущих.

Бурение методом «CFA» имеет несколько преимуществ, среди которых возможность проведения работ, не используя обсадные трубы . Это значительно уменьшает затраты на строительство.

Обустройство свайного фундамента (видео)

Пример расчета буронабивных свай

Перед тем, как выполнить бурение скважин под сваи, необходимо выполнить их расчет. Как это сделать, показано в примере.

Исходные размеры:

  • диаметр опоры (d) – 5 м;
  • длина – 0 м;
  • нагрузка на одну опору – х м умножить на 5.5 тонн (давление на 1 метр длины фундамента);

Несущая способность опоры вычисляется по формуле:

P = 0.7 х RH x F + u x 0.8 x fiн x li, где

  • Р – несущая способность опоры;
  • Rн – нормативное сопротивление грунта;
  • F – площадь подошвы сваи;
  • u – периметр сваи;
  • 8 – коэффициент условий работы;
  • 7 – коэффициент однородности почвы;
  • Fін – сопротивление грунта по внешней стороне опоры;
  • li – толщина слоя грунта, которая соприкасается с опорой.

Несущая способность влажного грунта, как показывает соответствующая таблица, равна 70 т/м 2 (Rн). Площадь сечения опоры (S) = 3.14 D 2 /4 = 3,14 х 0,25 / 4 = 0,785/4 = 0,196 м2. Периметр опоры (u) = 3,14 D = 3,14 x 0,5 = 1,57 м.

Коэффициент условий работы, как показывает соответствующая таблица, 0.8.

Несущая способность опоры равна Р = 0,7 х 1 = 15,4 т.

Минимальное расстояние между опорами составляет 15,4 тонны / 5,5 тонн/м =2,8 метра.

Характерным показателем прочности свайного фундамента является несущая способность отдельно взятой сваи. Эта характеристика влияет на общее количество свай в периметре фундамента – регулируя частотность, можно повышать предел нагрузки, которую будет способен выдержать фундамент. Количество буронабивных свай и несущая способность отдельно взятой свайной колонны это взаимосвязанные характеристики, оптимальное соотношение которых определяется путем проведения несложных расчетов.

Подготовка к расчету


Исходные данные, которые понадобятся для расчета несущей способности буронабивной сваи, получают в итоге проведения геологических изысканий и подсчета общей предполагаемой нагрузки здания. Это обязательные этапы расчета, проведение которых обосновано теорией расчета прочностных характеристик буронабивных фундаментов.

Такие показатели как глубина промерзания, уровень залегания грунтовых вод, разновидность грунта и его механические характеристики очень важны для получения точного результата. Информация о глубине промерзании грунта находится в СНиП 2.02.01-83*, данные разделены по климатическим районам, представлены картографически и в виде таблиц.

Не стоит полагаться на данные геологической и гидрогеологической разведки, полученные на соседних участках. Даже в пределах периметра одного земельного надела состояние грунтов оснований может резко изменяться. Три-четыре контрольные скважины в контрольных точках периметра дадут точную информацию о состоянии почв.

Расчет массы постройки ведут с учетом климатического района, расположения здания относительно румба ветров, среднего количества осадков в зимний период, массы строительных конструкций и оборудования. Этот показатель наиболее значим при проектировании фундамента – данные для проведения этой части расчета, а также схему и расчетные формулы можно найти в СНиП 2.01.07-85.

Проведение геологии


Проведение геологических изысканий ответственное мероприятие и в массовом поточном строительстве этим занимаются специалисты-геологи. В индивидуальном жилищном строительстве часто проводят самостоятельную оценку состояния грунтов. Не имея опыта проведения изысканий такого уровня очень сложно оценить реальное положение вещей. Работа грамотного специалиста по большей части заключается в визуальной оценке состояния напластований.

Для начала на участке устраивают шуфры – вертикальные выработки грунта прямоугольного или круглого сечения, глубиной от двух метров и шириной достаточной для визуального осмотра основания стенок ямы. Назначение шуфров – раскрытие почвы с целью осуществления доступа к напластованиям, скрытым под верхним слоем грунта. Геологи измеряет глубину пластов, берет пробу грунта из середины каждого слоя, а также впоследствии наблюдает за накоплением воды на дне забоя. Вместо шуфров могут устраиваться круглые скважины, из которых с помощью специального устройства вынимают керн или берут локальные пробы.

Шуфры укрывают на некоторое время – два-три дня – ограничивая попадание атмосферных осадков. После оценивают уровень воды, поднявшийся в полости скважины – эта отметка, отсчитанная от верхней границы, и будет уровнем залегания грунтовых вод.

Все полученные данные заносятся в сводную таблицу.Кроме того, составляется профиль сечения грунта, который позволяет предугадать состояние грунтов в точках, где бурение не производилось. При самостоятельной оценке оснований следует руководствоваться сведениями, представленными в СНиП 2.02.01-83* и ГОСТ 25100-2011, где в соответствующих разделах представлены классификации грунтов с описаниями, методы визуального определения типов грунта и характеристики в соответствии с типами.

Как использовать данные геологической разведки

После того как проведена геология местности – самостоятельно или нанятыми специалистами – можно приступать к определению начальных геометрических характеристик свай.

Нас интересуют тип грунта, показатель коэффициента неоднородности грунта, глубина промерзания и уровень расположения грунтовых вод. Схема расчета несущей способности буронабивной сваи для различных типов грунтов находится в приложениях СП 24.13330.2011.

Глубина заложения сваи должна быть как минимум на полметра ниже глубины промерзания, чтобы предотвратить воздействие морозного пучения грунтов на опорную часть колонны. Средняя глубина промерзания в центральной полосе России 1,2 метра, значит, минимальная длина сваи должна составлять в таком случае 1,7 метра. Значение меняется для отдельно взятых регионов.

Не только относительная влажность, но и взаимное расположение нижней отметки промерзания грунта и глубины залегания грунтовых вод. В холодное время года высоко расположенные замерзшие грунтовые воды будут оказывать сильное боковое давление на тело свайной колонны – такие грунты сильно деформируются и считаются пучинистыми.

Некоторые грунты, характеризующихся как слабые, высокопучинистые и просадочные, не подходят для устройства свайных фундаментов – для них больше подходят ленточные или плитные фундаменты. Определить тип грунта, а также тип совместимого фундамента, значит исключить скорое разрушение конструкций. Показатели неоднородности грунта, указанные в таблицах вышеперечисленных нормативных документов, используются в дальнейших расчетах.

Расчет общей нагрузки

Сбор нагрузок позволяет определить массу здания, а значит усилие, с которым постройка будет воздействовать на фундамент в целом и на его отдельно взятые элементы. Существует два типа нагрузок, воздействующих на опорную конструкцию – временные и постоянные. Постоянные нагрузки включают в себя:

  • Массу стеновых конструкций;
  • Суммарную массу перекрытий;
  • Массу кровельных конструкций;
  • Массу оборудования и полезной нагрузки.

Посчитать массу конструкций можно, определив объем конструкций, и умножив его на плотность использованного материала. Пример расчета массы для одноэтажного здания с железобетонными перекрытиями, кровлей из керамической черепицы и со стенами 600 мм из железобетона, размерами 10 на 10 метров в плане, высотой этажа 2 метра:

  • Вычисляем объем стен, для этого умножаем площадь поперечного сечения стены на периметр. Получаем V стены = 20 ∙ 2 ∙ 0,6 = 24 м3. Полученное значение умножаем на плотность тяжелого бетона, которая равняется 2500 кг/см3. Итоговая масса стеновых конструкций умножается на коэффициент надежности, для бетона равный k = 1,1. Получаем массу M стены = 66 т.
  • Аналогично считаем объем перекрытий(подвального и чердачного),масса которых при толщине 250 мм будет равняться Мпк = 137,5 т, с учетом аналогичного коэффициента надежности.
  • Вычисляем массу кровельных конструкций. Масса кровли для 1 м2 металлочерепицы – 65 кг, мягкой кровли – 75 кг, керамической черепицы – 125 кг. Площадь двускатной кровли для здания такого периметра будет составлять примерно 140 м2, а значит масса конструкций составит Мкр = 17,5 т.
  • Общий размер постоянной нагрузки будет равняться Мпост = 221 т.

Коэффициенты надежности для различных материалов находятся в седьмом разделе СП 20.13330.2011. При расчете следует учитывать массу перегородок, облицовочных материалов фасада и утеплителя. Объем, который занимают оконные и дверные проемы не вычитают из общего объема для простоты вычислений, поскольку он составляет незначительную часть общей массы.

Расчет временных нагрузок


Ростверк на винтовых сваях

Временные нагрузки рассчитываются в соответствии с климатическим районом и указаниями свода правил «Нагрузки и воздействия». К временным относятся снеговая и полезная нагрузки. Полезная нагрузка для жилых зданий составляет 150 кг на 1 м2 перекрытия, а значит общее число полезного веса будет равняться Мпол = 15 т.

Масса оборудования, которое предполагается установить в здании, также суммируется в этот показатель. Для определенного типа оборудования применяется коэффициент надежности, расположенный в вышеуказанном своде правил.

Существуют различные типы особых нагрузок, которые также необходимо учитывать при проектировании. Это сейсмические, вибрационные, взрывные и прочие.

где ce – коэффициент сноса снега, равный 0,85;

ct – термический коэффициент, равный 0,8;

m – переходный коэффициент, для зданий в плане менее 100 м принимаемый по таблице Г вышеуказанного СП;

St – вес покрова снега на 1 м2. Принимается по таблице 10.1, в зависимости от снегового района.

Показатели временных нагрузок суммируются с постоянными и получается количественный показатель общей нагрузки здания на фундамент. Это число используется для расчета нагрузки на одну свайную колонну и сравнения предела прочности. Для удобства расчета и наглядности примера примем временные нагрузки Мвр = 29 т, что в сумме с постоянными даст Мобщ = 250 т.

Определение несущей способности сваи

Геометрические параметры сваи и предел прочности это взаимосвязанные величины. В данном примере, нагрузка на один метр фундамента будет составлять 250/20 = 12,5 тонн.

Расчет предела предела нагрузки на отдельно взятой буронабивной сваи ведут по формуле:

где F – предел несущей способности; R – относительное сопротивление грунта, пример расчета которого находится в СНиП 2.02.01-83*; А – площадь сечения сваи; Eycf, fi и hi – коэффициенты из вышеуказанного СНиП; y – периметр сечения свайного столба, разделенный на длину.

Посмотрите видео, как проверить несущую способность сваи с помощью профессионального оборудования.

Для сваи полутораметровой длины диаметром 0,4 метра несущая способность будет равняться 24,7 тонны, что позволяет увеличить шаг свайных колонн до 1,5 метров. В таком случае нагрузка на сваю будет составлять 18, 75 тонн, что оставляет довольно большой запас прочности. Изменением геометрических характеристик, а также шага свайных колонн регулируется несущая способность. Данная таблица, представленная ниже, показывает зависимость несущей способности полутораметровой сваи от диаметра:

Зависимость несущей способности от ширины сваи

Существует масса сервисов, позволяющих провести расчет несущей способности сваи онлайн. Пользоваться следует только проверенными порталами, с хорошими отзывами.

Важно не превышать допустимую нагрузку на сваю и оставлять запас прочности – немногие сервисы умеют планировать распределение нагрузки, поэтому следует обратить внимание на алгоритм расчета.

«Копать или не копать» – этот гамлетовский вопрос при строительстве дома решается однозначно: копать. Он порождает несколько встречных: какой фундамент выбрать, на какую глубину его залить, как сделать все надежно и не слишком дорого?

Траншейный ленточный фундамент – привычный для застройщиков вариант опорной части здания. Кроме положительных качеств он имеет серьезные недостатки. Главные из них — большая материалоемкость и трудоемкость.

Подошву бетонной «ленты» приходится заливать ниже отметки промерзания грунта. В средней полосе России это минимум 1,2 метра. В более суровых климатических условиях для защиты от морозного пучения приходится загонять десятки «кубов» бетона еще глубже.

Если стройка ведется на слабом грунте, то заглубление ниже горизонта промерзания не спасет здание от осадки. Дойти до плотного основания, на которое надежно ляжет железобетонная «лента» не всегда возможно. В этом случае остается единственный выход — фундамент на буронабивных сваях.

По себестоимости он дешевле ленточного, не требует привлечения мощной землеройной техники и быстрее строится. О том, что представляет собой такая конструкция, как она рассчитывается и строится, мы поговорим в этой статье.

Знакомимся с буронабивным фундаментом

Идея буронабивного основания очень простая: там, где невозможно с минимальными затратами докопаться до плотного грунта, можно использовать длинные столбики-стойки. Для соединения их в общую конструкцию используется ростверк – монолитная железобетонная лента, связывающая оголовки свай.

Полезно знать о том, что сваи сильно отличаются от обычных массивных фундаментов по характеру взаимодействия с грунтом. Свая передает нагрузку двумя путями: через нижний торец (пятку) и через боковую поверхность за счет сил трения между стенкой и грунтом.

В зависимости от того, какая часть конструкции включена в работу, все буронабивные сваи делят на два типа:

  • Стойки.
  • Висячие.

Свая-стойка опирается на плотный почвенный слой. Висячая конструкция держит нагрузку только за счет силы контакта с окружающим грунтом. Поскольку плотное природное основание залегает достаточно глубоко, то значительная часть буронабивных конструкций относится к висячему типу.

Классификация, расчет и другие важные параметры, без которых невозможно выполнить устройство буронабивных свай, содержатся в СНиП 2.02.03-85 – настольной книге всех проектантов и подрядчиков. Застройщик может руководствоваться готовыми таблицами из этого норматива. В них указывается несущая способность опорных стоек. Зная ее и определив вес здания, можно подобрать нужное количество свай.

Данные, указанные в таблице, ориентировочные. Точное значение несущей способности буронабивной сваи рассчитывают по формуле, учитывающей несколько параметров:

  • диаметр;
  • марку бетона;
  • вид армирования;
  • глубину бурения;
  • механическую прочность грунта.

После всего сказанного, возникает вопрос: для каких зданий оправдано строительство буронабивного фундамента с ростверком? Некоторые застройщики считают, что такая конструкция не способна выдержать большие нагрузки, поэтому используют ее только для легких каркасных зданий, а также домов из бруса, газо или пенобетона. Это не так. На сваях сегодня стоят тысячи кирпичных девятиэтажек и никто не сомневается в их надежности.

Прочность буронабивной стойки, изготовленной в полевых условиях немного ниже, чем у конструкции, прошедшей полный цикл заводской обработки. Тем не менее, ее с запасом хватит для возведения кирпичного дома.

Главным условием качества в этом случае является правильный расчет и точное соблюдение технологии, включающей несколько этапов:

  1. Бурение скважины под буронабивные сваи (ручной мотобур или более мощная передвижная установка).
  2. Монтаж обсадной трубы (в сыпучих и сырых грунтах).
  3. Установку арматурных каркасов.
  4. Бетонирование скважины.
  5. Отсыпку песчано-щебеночной подушки под ростверк (толщина 10-15 см), компенсирующей подъем грунта в результате морозного пучения.
  6. Монтаж опалубки над поверхностью земли, установку арматуры и заливку ростверка, связывающего сваи.

Особенности расчета свайного фундамента

Первый шаг, с которого начинается расчет свайного поля – определение веса здания. Именно от него будет зависеть, сколько свай, какого диаметра и на какую глубину нам придется установить. Чем тяжелее дом, тем плотнее ставят сваи под стены.

При этом норматив требует, чтобы расстояние между центрами соседних опор было не менее 3-х диаметров сваи. При уменьшении этой дистанции происходит снижение несущей способности стоек.

Армирование свай выполняют вертикальными стержнями периодического профиля (диаметр 12-14 мм). Их количество зависит от диаметра стойки и может составлять от 3 до 8 штук. Между собой вертикальную арматуру соединяют горизонтальными отрезками стержней диаметром 6-8 мм. Заливка буронабивных свай должна выполняться бетоном марки не ниже 100.

Для более простого расчета стоимости материалов и несущей способности свай можно воспользоваться приведенной ниже таблицей.

В таблице выполнен расчет буронабивных свай длиною 2 метра и диаметром от 15 до 40 см. Арматура вертикальная 12 мм, поперечная — 6 мм с шагом 1 метр.

В качестве примера определим, сколько свай диаметром 20 см потребуется для фундамента под дом, вес которого составляет 60 тонн. Из таблицы видно, что одна стойка может выдержать вес не более 1884 кг. Разделив 60 000 кг на 1884 кг, получим 31,84 штук. Округляем в большую сторону до целого числа и получаем 32 сваи. Для их заливки (без осадных труб) нужно купить арматуру и бетон общей стоимостью 32х428,68 руб. = 13 717 руб.

Конечно, же итоговая стоимость вашего фундамента будет гораздо выше, так как в его стоимость войдет множество других затрат: земляные работы, доставка стройматериалов, устройство ростверка, услуги рабочих и техники. Однако при желании и объективной оценке своих сил все работы или их часть можно выполнить своими руками.

Полученное количество свайных опор нужно равномерно распределить под несущими стенами и перегородками здания, а также под всеми углами и пересечениями стен. При этом шаг свай будет зависеть от общей длины стен.

Любой человек, кто хоть раз приложил свои силы к строительству дома, знает, что основой долговечности и надежности здания является его фундамент. Однако создание надежного фундамента не такая легкая задача, как может показаться изначально.

Фундамент из буронабивных свай дешевле ленточного, и при этом надежней за счет расположения его ниже глубины промерзания грунта.

Закладка любого основания дома, в зависимости от типа фундамента, требует тщательного расчета.

К подобным расчетам относится, к примеру, или несущая способность буронабивной сваи.

Если подстилающие грунты не доставляют особых проблем, то практически любой дом может обойтись обычным ленточным фундаментом. Другое дело, если грунты под местом строительства проблемные: торфяники, болотистые или сильнопучинистые. Строить дома на таких подвижных грунтах необходимо с осторожностью, соблюдая технологию. По мнению опытных строителей, оптимальной на проблемных грунтах является использование буронабивных свай, которые объединяются по верху ленточным монолитным фундаментом или ростверком.

В чем преимущество буронабивных свай?

Свайный фундамент обходится гораздо дешевле, чем ленточный (до 20-50%) или плитный (до 2-4 раз). При этом буронабивные сваи опираются на устойчивую материнскую породу, расположенную ниже глубины промерзания, что исключает их движение в вертикальной плоскости при пучении почв. Исключение составляют такие почвы, материнские породы которых расположены глубже 8-10 м. На них в качестве фундамента целесообразнее использовать монолитную плиту, которая будет «плавать» вместе с подстилающими грунтами.

Набирающие в последнее время популярность винтовые столбы также опираются своим основанием на материнскую породу, однако они зачастую подвержены коррозии, так как цинковый или лакокрасочный слой на их поверхности истирается при вкручивании в землю. Для сравнения, срок службы винтового фундамента специалистами оценивается в 40-50 лет, тогда как способен служить гораздо больший срок. Свайно-винтовой фундамент может быть столь же долговечным, если металлические трубы заполнить изнутри бетоном, однако это резко повышает его стоимость и целесообразность.

Вернуться к оглавлению

Технология использования буронабивных свай

Главной особенностью использования буронабивных свай является их заливка непосредственно на месте строительства. Единственной сложностью является бурение скважин для заливки, так как это тяжелый ручной труд (тяжелая техника для бурения скважин не всегда может проехать до участка строительства при проблемных грунтах). Однако технологии не стоят на месте и строительный рынок предлагает множество решений для бурения скважин: от бензиновых до электрических непромышленных буров и бурильных установок. Особой надежностью обладают опоры с расширенной нижней частью, однако они более сложны в изготовлении.

Закладка фундамента такого типа представляет собой процесс бурения скважины необходимой глубины, в которую помещают каркас из арматуры. Армирование придаст свае прочность на изгиб или излом в горизонтальной плоскости. После расположения арматуры скважина заливается бетоном вровень с уровнем грунта или при необходимости выше него, но с сооружением соответствующей опалубки. Опалубку делают из подручных материалов (рубероида, асбестовой трубы или досок) на необходимую по проекту высоту.

Оголовок должен быть доступен для соединения с ростверком. Чаще всего над поверхностью оставляют окончание армокаркаса, который свяжет готовые опоры с ростверком.

Вернуться к оглавлению

Расчет основных характеристик буронабивных свай

Вернуться к оглавлению

Несущая способность – главная характеристика буронабивной сваи

При создании свайного фундамента нельзя не учитывать такой параметр, как несущая способность каждой опоры, так как от этого зависит как расход материалов для их создания, так и количество самих столбов для надежной опоры здания.

Несущая способность напрямую зависит от размеров столба. К примеру, буронабивная свая диаметром 300 мм способна выдержать нагрузку в 1,7 т, тогда как свая с диаметром 500 мм выдерживает уже 5 т. При незначительной разнице в размерах нагрузка отличается в разы.

Исходя из этого, правильный расчет опор обеспечивает надежный фундамент дома. Кроме того, от напрямую зависит их количество и количество необходимого материала для их изготовления. Потому расчет количества буронабивных свай и оптимального расстояния между ними (еще один важный параметр свайного фундамента) является компонентом общего для строительства дома.

Вернуться к оглавлению

Материал изготовления

Как уже сказано ранее, показатель несущей способности буронабивной сваи зависит от ее размеров. Однако это не единственный критерий, применяемый для расчета несущей способности свайного фундамента. Не менее важно учитывать материал, из которого он изготовлен. Марка бетона, применяемого для заливки конструкции, напрямую влияет на прочность фундамента и выдерживаемые нагрузки.

К примеру, свая, залитая бетоном М 100, теоретически способна выдерживать нагрузку в 100 кг на 1 см² площади ее опоры. Этот показатель является достаточно высоким, так как свая квадратного сечения со стороной основания равной 20 см и площадью 400 см² должна выдерживать нагрузку в 40 т. Расчет показал, что несущая способность напрямую зависит от материала, из которого изготовлен фундамент.

Кроме того, важно учитывать не только ту нагрузку, которую может выдержать каждая свая, но и несущую способность самих подстилающих грунтов. Соответственно, при недостаточном количестве столбов и повышенной нагрузке на грунт фундамент может разрушиться из-за того, что отдельные сваи уйдут дальше на глубину.

Чем прочнее подстилающие грунты, тем меньшее количество опор необходимо для сооружения качественного фундамента дома. Кроме того, необходимо учитывать глубину промерзания почв на данном участке, уровень грунтовых вод, непосредственную длину конструкций, прочность арматуры и так далее.

Вернуться к оглавлению

Стоимость свайного фундамента

Все вышеперечисленные параметры влияют на количество и качество столбов, от которых зависит общая стоимость свайного фундамента. : для диаметром 15 мм, заложенной на глубину 2 м, необходимо 0,035 м³ бетона, 3 арматурных прута длиной 2 м с диаметром 12 мм и некоторое количество гладкой арматуры для их обвязки. С учетом того, что все эти материалы необходимо будет доставить до участка строительства, выходит, что стоимость каждой опоры (без учета работ по их бурению и заливке принимается условие, что все эти работы производились лично вами) равняется 180-200 руб., а общая стоимость фундамента будет равна результату от умножения этой цифры на общее количество опор.

Полученная цифра может быть скорректирована. К примеру, как уже говорилось, в строительстве применяются буронабивные сваи с расширенным основанием. Такое основание производится с помощью специального приспособления (плуга), которое надевается на наконечник бура. Плуг опускается в уже готовую скважину и вращением расширяет ее основание. Что же дает такой шаг? Обычная свая диаметром 200 мм выдерживает нагрузку в 1 т. Если же расширить ее основание до 300 мм, оставляя остальную скважину неизменной, то несущая способность увеличится до 2 т. То есть незначительное увеличение расхода бетона и специальное приспособление позволяет значительно сократить общее , что значительно снизит стоимость готового фундамента.

После того как будет известна нагрузка на фундамент, вычислена несущая способность с учетом грунтов и материалов и подсчитано необходимое их количество, определяется оптимальное расстояние между ними. Главным условием остается то, что они обязательно должны быть расположены по углам будущего здания и в местах перемычек внешних и внутренних стен.

На стоимость фундамента влияет и конструкция фундамента. Так, фундамент с ростверком будет дороже, чем без него, однако и прочностью обладать гораздо большей. При обвязке ростверком можно не опасаться того, что одна из свай поднимется или опустится под действием сил пучения, разрушая при этом целостность дома.

Если же грунты достаточно надежны, а глубина закладки позволяет не бояться пучения грунтов, то ростверк создавать необязательно.