Первый конденсатор. Конденсаторы, свойства конденсатора, обозначение конденсаторов на схемах, основные параметры. Электрическое сопротивление изоляции конденсатора - r

21.09.2023 Электрика

Используемые сегодня практически всюду в электронике и электротехнике, в качестве диэлектрика содержат различные вещества. Однако, что касается конкретно , в частности также танталовых и полимерных, то для них при включении в схему важно строгое соблюдение полярности. Если такой конденсатор включить в цепь неправильно, то он не сможет нормально работать. Данные конденсаторы называются поэтому полярными.

В чем же заключается принципиальное отличие полярного конденсатора от неполярного, почему одним конденсаторам все равно как быть включенными в схему, а другим принципиально важно соблюдение полярности? В этом и попробуем сейчас разобраться.

Дело здесь в том, что процесс изготовления электролитических конденсаторов сильно отличается от, скажем, . Если у последних двух как обкладки, так и диэлектрик однородны по отношению друг к другу, то есть нет различия в структуре на границе обкладка-диэлектрик с обеих сторон диэлектрика, то электролитические конденсаторы (цилиндрические алюминиевые, танталовые, полимерные) имеют различие в структуре перехода диэлектрик-обкладка с двух сторон диэлектрика: анод и катод отличаются по химическому составу и физическим свойствам.

Когда изготавливают электролитический алюминиевый конденсатор, то не просто скручивают в рулон две одинаковые обкладки из фольги, проложенные пропитанной электролитом бумагой.

Со стороны анодной обкладки (на которую подается +) присутствует слой оксида алюминия, нанесенный на травленую поверхность фольги особым способом. Анод призван отдавать электроны через внешнюю цепь катоду в процессе заряда конденсатора.

Отрицательная обкладка (катод) - просто алюминиевая фольга, на нее в процессе заряда приходят электроны по внешней цепи. Электролит здесь служит проводником ионов.

Так же обстоит дело и с танталовыми конденсаторами, где в качестве анода служит порошок тантала, на котором формируется пленка пентаоксида тантала (анод связан с оксидом!), несущего функцию диэлектрика, затем идет слой полупроводника — диоксида марганца в качестве электролита, затем серебряный катод, с которого будут уходить электроны в процессе разряда.

Полимерные электролитические конденсаторы в качестве катода используют легкий проводящий полимер, а в остальном все процессы аналогичны. Суть — окислительная и восстановительная реакции, как в аккумуляторной батарее. Анод окисляется во время электрохимической реакции разрядки, а катод восстанавливается.

Когда электролитический конденсатор заряжен, то имеет место избыток электронов на его катоде, на минусовой обкладке, сообщающий как раз отрицательный заряд этой клемме, а на аноде — недостаток электронов, дающий положительный заряд, таким образом получаем разность потенциалов.

Если заряженный электролитический конденсатор замкнуть на внешнюю цепь, то избыточные электроны побегут от отрицательно заряженного катода к положительно заряженному аноду, и заряд будет нейтрализован. В электролите положительные ионы движутся в этот момент от катода к аноду.

Если включить такой полярный конденсатор в цепь неправильно, то описанные реакции не смогут нормально протекать, и конденсатор не будет нормально работать. Неполярные же конденсаторы могут работать в любом включении, поскольку в них нет ни анода, ни катода, ни электролита, и их обкладки взаимодействуют с диэлектриком одинаково, ровно как и с источником.

А что если под рукой есть только полярные электролитические конденсаторы, а нужно осуществить включение конденсатора в цепь тока с меняющейся полярностью? Для этого существует одна хитрость. Нужно взять два одинаковых полярных электролитических конденсатора, и соединить их между собой последовательно одноименными клеммами. Получится один неполярный конденсатор из двух полярных, емкость которого будет в 2 раза меньше каждого из двух его составляющих.

На этой основе, кстати, изготавливают неполярные электролитические конденсаторы, в которых слой оксида присутствует на обеих обкладках. По этой причине неполярные электролитические конденсаторы имеют значительно больший размер, чем полярные аналогичной емкости. Основываясь на данном принципе, изготавливают также электролитические пусковые неполярные конденсаторы, рассчитанные на работу в цепях переменного тока частотой 50-60 Гц.

В повседневной жизни каждый человек пользуется преобразователями напряжения, адаптерами и блоками питания. Но, мало кто задумывается, что главную функцию в перечисленных устройствах выполняют конденсаторы. Его в народе еще называют «электролитами». Их главной особенностью являются небольшие габариты и способность накапливать заряд до уровня своей емкости.

В области радиотехники и электрики конденсатором электролитическим называют элемент с оболочкой диэлектрика, сделанной из оксида металла, называемым анодом, и внутренней емкостью для накопления заряда, называемой катодом. За счет такого свойства они имеют широкое применение в электротехнических приборах и радиоустройствах. Конденсаторы присутствуют в схемах радиоприемников, телевизоров, стиральных машин, кондиционеров, компьютерной техники и во многих других приборах.

История появления и развития

В 1875 году ученый из Франции Eugène Adrien Ducretet открыл электрохимический процесс в некоторых металлах. Образцами исследования стали тантал, ниобий, цинк, титан, кадмий, алюминий, сурьма и другие. Указанные образцы употреблялись в виде анода (положительного полюса средства питания). Под действием электрического поля на их поверхностями появлялся слой оксида, имеющий вентильные характеристики.

В 1896 году ученый Карол Поллак направил в бюро по выдаче патентов заявку на придумывание конденсатора. Он доказал собственным элементом, что электрохимические процессы должны обладать определенной полярностью на границе металла с диэлектриком для формирования оксидного образования. Несоблюдение такой полярности приводит к диэлектрическим потерям и короткому замыканию.

В России длительное время считалось изготовление электролитических конденсаторов экономически не выгодным. Хотя в научных изданиях было много доводов, какие можно применить технологии для наладки производства. Первые серьезные наработки в вопросе выпуска электролитических конденсаторов появились в нашем государстве в 1931 году. Их емкость была заполнена жидким электролитом. Сегодня производство данных элементов поставлено на широкий поток. Изготовлением электролитических конденсаторов занимаются многие фирмы с мировым именем.

Варианты конденсаторов по применению

Как известно из школьной программы физики, конденсаторы – это полярные приспособления. Они начинают функционировать при направлении тока в одном направлении. Поэтому на практике их включают в схемы с цепями неизменного или пульсирующего напряжения.

Применение в цепях неизменного напряжения

Свойства конденсатора такой конструкции используют:

  1. для накопления электрической энергии в импульсных генераторах, импульсных источниках света, а также для намагничивания магнитотвердых элементов в процессе физических опытов;
  2. для поднятия тока до определенной отметки в сварочных агрегатах, рентгеновских установках и приборах для копирования;
  3. для точной работы схем аналоговой памяти или аналоговой развертки;
  4. для образования инструмента питания в электронных приборах и электрических приводах.

В цепях неизменного напряжения с пульсирующим наложением

Характеристики конденсаторов в цепях постоянного напряжения с пульсирующим наложением применяют:

  1. для создания полосовых фильтрующих участков совместно с резисторами и катушками индуктивности;
  2. для шунтирования элементов схемы электронного типа по меняющемуся току;
  3. для соединения участков цепи по переменному току с элементами, функционирующими на постоянной составляющей;
  4. для генерации пилообразного и прямоугольного напряжения в схемах релаксационного типа генератора;
  5. для выпрямления напряжения в выпрямителях.

Назначение в схемах изменяемого напряжения

Для схем переменного тока производителями конденсаторов созданы элементы, имеющие неполярную емкость. В своей конструкции они имеют дополнительные элементы и увеличенные габариты. Они бывают разной ёмкости, наполненной концентрированными щелочными веществами и кислотами.

Они применяются:

  1. Для подъема качества электрической энергии и увеличения коэффициента мощности. Например, алюминиевые электролитические конденсаторы снижают уровень реактивной составляющей, что повышает коэффициент мощности до 0,999;
  2. В инверторных схемах и устройствах с выпрямителями на тиристорах для уменьшения влияния магнитных полей;
  3. Для улучшения пусковой способности двигателя асинхронного типа. Практически все пусковые схемы однофазных электродвигателей содержат конденсаторы.

По способу заполнения переменный конденсатор делится на виды:

  • с жидкостным диэлектриком;
  • с сухим наполнением;
  • с оксидными полупроводниковыми параметрами конденсаторов;
  • оксидно-металлического исполнения.

Анод электролитических конденсаторов изготавливается из фольги алюминия, ниобия или тантала. Конденсатор с переменной емкостью оксидно-полупроводникового вида имеет катод в виде шара полупроводника, нанесенного на оксидный слой.

Конструкция конденсаторов

Разного типа и размеров конденсаторы сделаны из двух элементов – это обкладки и емкость (расстояние между обложками), заполненное диэлектрическим веществом. Емкость считается по формуле:

C = ee0S/d, где:

  • S – значение площади обкладки;
  • d – значение расстояния между пластинками;
  • e0 –электрическая составляющая, устанавливающая напряженность электрического поля вакуумного пространства;
  • е – диэлектрическая проницаемость.

Особенность электролитических конденсаторов заключается в том, что они содержат слой электролитического вещества между двумя обложками из фольги, где одна из них покрыта пленкой полупроводникового оксида. Такие электролиты имеют внутри обкладки, сложены вместе с разделяющим бумажным слоем, пропитанным электролитом. От ее толщины зависит емкость конденсатора. Верхний шар покрыт также разделительным бумажным слоем. Все в комплекте свернуто «в трубочку» и находится в металлическом корпусе.

По краям фольги припаяны металлические пластинки в виде контактов. Они предназначены для соединения с другими элементами схемы. Причем вывод с положительным потенциалом покрыт оксидным шаром. Функцию катода выполняет слой электролита, соединенный со второй обкладкой.

С помощью электрохимической коррозии поверхности обкладки (рифление) в процессе изготовления увеличивают площадь обкладки. С помощью такой технологии создаются конденсаторы большой емкости.

Обычно рассматриваемый элемент безаварийно функционирует при нормальной температуре и неискаженном напряжении. Например, при увеличении напряжения выше нормы происходит образование нового слоя оксидов, сопровождаемое выделением тепла и газообразованием. В результате давление в корпусе резко возрастает, и его прочность не в силах справиться с такой ёмкостью. Это может привести к взрыву и разрушению других элементов цепи.

Многие фирмы изготавливают конденсаторы с защитной мембраной. Она разламывается под действием образования газов и блокирует взрыв. Маркировка таких конденсаторов заключается в нанесении насечки в виде буквы «Т», «Y» или знака «+».

Дешифрование цифр и букв на поверхности изделия

Для правильной расшифровки обозначений на корпусе разных элементов требуется знать единицы измерения. Для конденсаторов следует запомнить, что емкость измеряется в фарадах (Ф). Она имеет такие соотношения:

  • 1мкФ (микрофарад)F=10¯⁶F;
  • 1мФ (миллифарад)F=10¯³F;
  • n(нанофарад)F=10¯⁹;
  • p(пикофарад)F=10¯¹²F.

Маркировка конденсаторов больших параметров указывается прямо на корпусе элемента. В некоторых конструкциях надписи имеют разные обозначения. В таких случаях лучше ориентироваться по значениям, указанным выше.

На некоторых модификациях маркировка нанесена заглавными буквами. Например, вместо 1мФ стоит МF. Также можно встретить, что маркировка содержит набор букв fd, что означает фарад. Кроме этого в шифре содержится информация, допускающая отклонение от номинала в процентном соотношении. Например, если маркировка содержит 6000uF + 50%-70%, то следует понимать, что это отличается от заданного номинала на 50%-70%. То есть можно применять конденсатор на 9000uF или на 1800uF. Если проценты отсутствуют, то требуется найти букву. Обычно она выглядит отдельным от емкости обозначением. Каждая буква допускает отклонение от номинала.

После определения номинала и разрешенной погрешности нужно перейти к определению значения напряжения. Оно обозначается цифрами совместно с буквами, такими как V, VDC, WV или VDCW. Обозначение WV означает рабочее напряжение. Цифры указывают на максимальные разрешенные допуски.

Важно знать! Если на поверхности нет значения, указывающего номинал напряжения, то такие конденсаторы можно применять в низковольтных цепях схемы. Также нужно запомнить, что конденсаторы, работающие на переменном напряжении, нельзя использовать в схемах постоянного напряжения, и наоборот.

Для определения полярности выводов на корпусе нанесены знаки «+» и «–». Если их нет, то конденсатор подключается в цепь любой стороной.

Цифровая расшифровка

Цифры на корпусе имеют собственную расшифровку. Когда указаны только две цифры и одна буква, то сочетание цифр указывают на емкость. Все остальные кодировки нужно понимать с нестандартным подходом. Они в основном зависят от конструкции элемента.

Третья цифра является множителем нуля. Поэтому расшифровка выполняется по конечной цифре. Если она находится в пределе от 0 и до 6, то к первым цифрам прибавляются нули в числе указанной третьей цифры. Например, 373 означает 37000.

Когда последняя цифра выходит за предел 0-6, например, стоит 8, то первая цифра должна умножиться на 0,01. Таким образом, шифр 378 обозначает 0,37. Когда в конце стоит цифра 9, то сочетание первых двух цифр умножается на 0,1. Обозначение 379 нужно читать как 3,7.

Когда из сочетания цифр с емкостью все понятно, то нужно знать единицу измерения.

Важно помнить! Маленькие конденсаторы измеряются в пикофарадах, а большие элементы – в микрофарадах.

Буквенная кодировка

Букву R в первых двух символах следует понимать под обозначением запятой, применяемой в обозначении десятичной дроби. Например, шифр 4R1 читается как 4,1 пФ. Если в маркировке содержаться буквы p, n или u, то их тоже следует менять на запятую. Например, n61 означает 0,61 нано фарад.

Смешанная маркировка

В такой код на корпусе конденсатора входят буквы и цифры, чередуя друг друга. Обычно это наносится по схеме «буква – цифра – буква». Первая буква указывает на рабочую температуру надежного состояния конденсатора. Вторая цифра – это предел допустимой температуры.

Третья буква означает изменение емкости в пределе от минимальной температуры и до максимальной допустимой температуры. Если стоит буква «А», то это точный показатель. Его погрешность равна 0,1%. При наличии буквы «V» показатель емкости колеблется в пределе 22%-82%. Очень часто встречаются конденсаторы с буквой «R», что означает 15% отклонения емкости от изменения температуры.

Изменение параметров в процессе эксплуатации

Чтобы понимать, какие хорошие конденсаторы, а какие нет, нужно знать общие характеристики, и помнить, как параметры зависят друг от друга. Например, способность в рабочем режиме кпе выделять газы требует при монтаже схемы создавать запас допустимого напряжения в пределе 0,5-0,6 его значения. Особенно это важно, когда схема функционирует в среде с повышенным температурным режимом.

С использованием конденсатора в цепях меняющегося тока обязательно учитывается зависимость от рабочей частоты. Обычно рабочая частота меняющегося напряжения не должна отклоняться от 50 Гц. Для более высоких частот нужно включать конденсаторы с более низким допустимым напряжением. В обратном случае будет появляться сильный нагрев диэлектрика, что приведет к разрыву корпуса.

Элементы с большой емкостью и малыми значениями токов утечки способны длительно сохранять заряд. Поэтому важно для безопасности параллельно подключать резистивный элемент с сопротивлением не меньше 1 Мом и мощностью 0,5 Вт.

Электрические конденсаторы служат для накопления электрической энергии. Без них не будет функционировать ни одна схема радио,- и телевизионного приемника. Появление микросхем изменила функцию конденсаторов. Многие из них изготавливаются в интегрированном виде.

Видео

Много написано про конденсаторы, стоит ли добавлять еще пару тысяч слов к тем миллионам, что уже есть? Таки добавлю! Верю, что моё изложение принесёт пользу. Ведь оно будет сделано с учётом .

Что такое электрический конденсатор

Если говорить по-русски, то конденсатор можно обозвать "накопитель". Так даже понятнее. Тем более именно так переводится на наш язык это название. Стакан тоже можно обозвать конденсатором. Только он накапливает в себе жидкость. Или мешок. Да, мешок. Оказывается тоже накопитель. Накапливает в себе всё, что мы туда засунем. Причем тут электрический кондесатор? Он такой же как стакан или мешок, но только накапливает электрический заряд.

Представь себе картину: по цепи проходит электрический ток, на его пути встречаются резисторы, проводники и, бац, возник конденсатор (стакан). Что случится? Как ты знаешь, ток -- это поток электронов, а каждый электрон имеет электрический заряд. Таким образом, когда кто-то говорит, что по цепи проходит ток, ты предствляешь себе как по цепи бегут миллионы электронов. Именно вот эти самые электрончики, когда на их пути возникает конденсатор, и накапливаются. Чем больше запихнем в конденсатор электронов, тем больше будет его заряд.

Возникает вопрос, а сколько можно таким образом накопить электронов, сколько влезет в конденсатор и когда он "наестся"? Давай выяснять. Очень часто для упрощенного объяснения простых электрических процессов используют сравнение с водой и трубами. Воспользуемся таким подходом тоже.

Представь, трубу, по которой течет вода. На одном конце трубы насос, который с силой закачивает воду в эту трубу. Затем поперек трубы мысленно поставь резиновую мембрану. Что произойдёт? Мембрана станет растягиваться и напрягаться под действием силы давления воды в трубе (давление создаётся насосом). Она будет растягиваться, растягиваться, растягиваться и в итоге сила упругости мембраны либо уравновесит силу насоса и поток воды остановится, либо мембрана порвётся (Если так непонятно, то представь себе воздушный шарик, который лопнет, если его накачать слишком сильно) ! Тоже самое происходит и в электрических конденсаторах. Только там вместо мембраны используется электрическое поле, которое растёт по мере зарядки конденсатора и постепенно уравновешивает напряжение источника питания.

Таким образом, у конденсатора есть некоторый предельный заряд, который он может накопить и после превышения которого произойдёт пробой диэлектрика в конденсаторе он сломается и перестанет быть конденсатором. Самое время, видимо, рассказать как устроен конденсатор.

Как устроен электрический конденсатор

В школе тебе рассказывали, что конденсатор -- это такая штуковина, которая состоит из двух пластин и пустоты между ними. Пластины эти называли обкладками конденсатора и к ним подключали проводки, чтобы подать напряжение на конденсатор. Так вот современные конденсаторы не сильно отличаются. Они все также имеют обкладки и между обкладками находится диэлектрик. Благодаря наличию диэлектрика улучшаются харктеристики конденсатора. Например, его ёмкость.

В современных конденсаторах используются разные виды диэлектриков (об этом ниже) , которые запихиваются между обкладок конденсаторов самыми изощренными способами для достижения опредлённых характеристик.

Принцип работы

Общий принцип работы достаточно прост: подали напряжение -- заряд накопился. Физические процессы, которые при этом происходят сейчас тебя не сильно должны интересовать, но если захочешь, то можешь об этом прочитать в любой книге по физике в разделе электростатики.

Конденсатор в цепи постоянного тока

Если поместить наш конденсатор в электрическую цепь (рис. ниже), включить последовательно с ним амперметр и подать в цепь постоянный ток, то стрелка амперметра кратковременно дёрнется, а затем замрет и будет показывать 0А -- отсутствие тока в цепи. Что случилось?

Будем считать, что до того, как был подан ток в цепь, конденсатор был пуст (разряжен), а когда подали ток, то он очень быстро стал заряжаться, а когда зарядился (эл. поле между обкладками конденсатора уравновесило источник питания), то ток прекратился (здесь график заряда конденсатора).

Именно поэтому говорят, что конденсатор не пропускает постоянный ток. На самом деле пропускает, но очень короткое время, которое можно посчитать по формуле t = 3*R*C (Время зарядки конденсатора до объёма 95% от номинального. R- сопротивление цепи, C - ёмкость конденсатора) Так конденсатор ведёт себя в цепи постоянного тока. Совсем иначе он себя ведёт в цепи переменного!

Конденсатор в цепи переменного тока

Что такое переменный ток? Это когда электроны "бегут" сначала туда, потом назад. Т.е. направление их движения все время меняется. Тогда, если по цепи с конденсатором побежит переменный ток, то на каждой его обкладке будет скапливаться то "+" заряд, то "-". Т.е. фактически будет протекать переменный ток. А это значит, что переменный ток "беспрепятственно" проходит через конденсатор.

Весь этот процесс можно смоделировать с помощью метода гидравлических аналогий. На картинке ниже аналог цепи переменного тока. Поршень толкает жидкость то вперёд, то назад. Это заставляет крутится крыльчатку вперёд-назад. Получается как бы переменный поток жидкости (читаем переменный ток).

Давай теперь поместим между источником силы (поршнем) и крыльчаткой меодель конденсатора в виде мембраны и проанализируем, что изменится.

Похоже, что ничего не изменится. Как жидкость совершала колебательные движения, так она их и совершает, как из-за этого колебалась крыльчатка, так и будет колебаться. А значит наша мембрана не является препятствием для переменного потока. Также будет и для электронного конденсатора.

Дело в том, что хоть электроны, которые бегут поцепи и не пересекают диэлектрик (мембрану) между обкладками конденсатора, но за пределами конденсатора их движение колебательное (туда-сюда), т.е. протекает переменный ток. Эх!

Таким образом конденсатор пропускает переменный ток и задерживает постоянный. Это очень удобно, когда требуется убрать постоянную составляющую в сигнале, например, на выходе/входе аудиоусилителя или, когда требуется посмотреть только переменную часть сигнала (пульсации на выходе источника постоянного напряжения).

Реактивное сопротивление конденсатора

Конденсатор обладает сопротивлением! В принципе, это можно было предположить уже из того, что через него не проходит постоянный ток, как если бы это был резистор с оооочень большим сопротивлением.

Другое дело ток переменный -- он проходит, но испытывает со стороны конденсатора сопротивление:

f - частота, С - ёмкость конденсатора. Если внимательно посмотреть на формулу, то станет видно, что если ток постоянный, то f = 0 и тогда (да простят меня воинствующие математики!) X c = бесконечность. И постоянного тока через конденсатор нет.

А вот сопротивление переменному току будет менять в зависимости от его частоты и ёмкости конденсатора. Чем больше частота тока и емкость конденсатора, тем меньше сопротивляется он этому току и наоборот. Чем быстрее меняется напряже-
напряжение, тем больше ток через конденсатор, этим и объясняется уменьшение Хс с ростом частоты.

Кстати, ещё одной особенность конденсатора заключается в том, что на нём не выделяется мощность, он не нагревается! Поэтому его иногда используют для гашения напряжения там, где резистор бы задымился. Например для понижения напряжения сети с 220В до 127В. И ещё:

Ток в конденсаторе пропорционален скорости приложенного к его выводам напряжения

Где используются конденсаторы

Да везде где требуются их свойства (не пропускать постоянный ток, умение накапливать электрическую энергию и менять свое сопротивление в зависимости от частоты), в фильтрах, в колебательных контурах, в умножителях напряжения и т.д.

Какие бывают конденсаторы

Промышленность выпускает множество разных видов конденсаторов. Каждый из них обладает опредлёнными преимуществами и недостатками. У одних малый ток утечки, у других большая ёмкость, у третьих что-нибудь ещё. В зависимости от этих показателей и выбирают конденсаторы.

Радиолюбители, особенно как мы -- начинающие -- особо не заморачиваются и ставят, что найдут. Тем не менее следует знать какие основные виды конденсаторов существуют в природе.

На картинке показано весьма условное разделение конденсаторов. Я его составил на свой вкус и нравится оно мне тем, что сразу понятно существуют ли переменные конденсаторы, какие бывают постоянные конденсаторы и какие диэлектрики используются в распространённых конденсаторах. В общем-то всё, что нужно радиолюбителю.


Обладают малым током утечки, малыми габаритами, малой индуктивность, способны работать на высоких частотах и в цепях постоянного, пульсирующего и переменного тока.

Выпускаются в широком диапазоне рабоичх напряжений и ёмкостей: от 2 до 20 000 пФ и в зависимости от исполнения выдерживают напряжение до 30кВ. Но чаще всего ты встретишь керамические конденсаторы с рабочим напряжением до 50В.


Честно скажу не знаю выпускают ли их сейчас. Но раньше в таких конденсаторах в качестве диэлектрика использовалась слюда. А сам конденсатор состоял из пачки слюдяных, на каждой из которых с обеих сторон наносились обкладки, а потом такие платсинки собирались в "пакет" и запаковывались в корпус.

Обычно они имели ёмкость от нескольких тысяч до десятков тысяч пикофорад и работали в диапазоне напряжений от 200 В до 1500 В.

Бумажные конденсаторы

Такие конденсаторы в качестве диэлектрика имеют конденсаторную бумагу, а в качестве обкладок -- алюминиевые полоски. Длинные ленты алюминиевой фольги с проложенной между ними лентой бумаги сворачиваются в рулон и пакуются в корпус. Вот и весь фокус.

Такие конденсаторы бывают ёмкостью от тысяч пикофорад до 30 микрофорад, и могут выдерживать напряжение от 160 до 1500 В.

Поговаривают, что сейчас они ценятся аудиофиалами. Не удивлен -- у них и провода односторонней проводимости бывают...

В принципе обычные кондесаторы с полиэстером в качестве диэлектрика. Разброс ёмкостей от 1 нФ до 15 мФ при рабочем напряжении от 50 В до 1500 В.


У конденсаторов этого типа есть два неоспоримых преимущества. Первое -- можно их делать с очень маленьким допуском всего в 1%. Так что, если на таком написано 100 пФ, то значит его ёмкость 100 пФ +/- 1%. И второе -- это то, что их рабочее напряжение может достигать до 3 кВ (а ёмкость от 100 пФ, до 10 мФ)

Электролитические кондесаторы


Эти конденсаторы отличаются от всех других тем, что их можно включать только цепь постоянного или пульсирующего тока. Они полярные. Имеют плюс и минус. Связано это с их конструкцией. И если такой конденсатор включить наоборот, то он скорее всего вздуется. А раньше они еще и весело, но небезопасно взрывались. Бывают электролитические конденсаторы алюминиевые и танталовые.

Алюминиевые электролитические конденсаторы устроены почти как бумажные с той лишь разницей, что обкладками такого конденсатора являются бумажная и алюминиевые полосы. Бумага пропитана электролитом, а на алюминиевыую полосу нанесен тонкий слой окисла, который и выступает в роли диэлектрика. Если подать на такой конденсатор переменный ток или включить обратно полярностям вывода, то электролит закипает и конденсатор выходит из строя.

Электролитические конденсаторы обладают достаточно большой ёмкостью, благодаря чему их, к примеру, часто используют в выпрямительных цепях.

На этом наверно всё. За кадром остались конденсаторы с диэлектриком из полкарбоната, полистирола и наверно ещё многие другие виды. Но думаю, что это уже будет лишним.

Продолжение следует...

Во второй части я планирую показать примеры типичного использования конденсаторов..

— это электрический (электронный) компонент, состоящий из двух проводников (обкладок), разделенных между собой слоем диэлектрика. Существует много видов конденсаторов. В основном они делятся по материалу из которого изготовлены обкладки и по типу используемого диэлектрика между ними.

Виды конденсаторов

Бумажные и металлобумажные конденсаторы

У бумажного конденсатора диэлектриком, разделяющим фольгированные обкладки, является специальная конденсаторная бумага. В электронике бумажные конденсаторы могут применяться как в цепях низкой частоты, так и в высокочастотных цепях.

Хорошим качеством электрической изоляции и повышенной удельной емкостью обладают герметичные металлобумажные конденсаторы, у которых вместо фольги (как в бумажных конденсаторах) используется вакуумное напыление металла на бумажный диэлектрик.

Бумажный конденсатор не имеет большую механическую прочность, поэтому его начинку помещают в металлический корпус, служащий механической основой его конструкции.

Электролитические конденсаторы

В электролитических конденсаторах, в отличии от бумажных, диэлектриком является тонкий слой оксида металла, образованный электрохимическим способом на положительной обложке из того же металла.

Вторую обложку представляет собой жидкий или сухой электролит. Материалом, создающим металлический электрод в электролитическом конденсаторе, может быть, в частности, алюминий и тантал. Традиционно, на техническом жаргоне «электролитом» называют алюминиевые конденсаторы с жидким электролитом.

Но, на самом деле, к электролитическим также относятся и танталовые конденсаторы с твердым электролитом (реже встречаются с жидким электролитом). Почти все электролитические конденсаторы поляризованы, и поэтому они могут работать только в цепях с постоянным напряжением с соблюдением полярности.

В случае инверсии полярности, может произойти необратимая химическая реакция внутри конденсатора, ведущая к разрушению конденсатора, вплоть до его взрыва по причине выделяемого внутри него газа.

К электролитическим конденсаторам так же относится, так называемые, суперконденсаторы (ионисторы) обладающие электроемкостью, доходящей порой до нескольких тысяч Фарад.

Алюминиевые электролитические конденсаторы

В качестве положительного электрода используется алюминий. Диэлектрик представляет собой тонкий слой триоксида алюминия (Al 2 O 3),

Свойства:

  • работают корректно только на малых частотах;
  • имеют большую емкость.

Характеризуются высоким соотношением емкости к размеру: электролитические конденсаторы обычно имеют большие размеры, но конденсаторы другого типа, одинаковой емкости и напряжением пробоя были бы гораздо больше по размеру.

Характеризуются высокими токами утечки, имеют умеренно низкое сопротивление и индуктивность.

Танталовые электролитические конденсаторы

Это вид электролитического конденсатора, в которых металлический электрод выполнен из тантала, а диэлектрический слой образован из пентаоксида тантала (Ta 2 O 5).

Свойства:

  • высокая устойчивость к внешнему воздействию;
  • компактный размер: для небольших (от нескольких сотен микрофарад), размер сопоставим или меньше, чем у алюминиевых конденсаторов с таким же максимальным напряжением пробоя;
  • меньший ток утечки по сравнению с алюминиевыми конденсаторами.

Полимерные конденсаторы

В отличие от обычных электролитических конденсаторов, современные твердотельные конденсаторы вместо оксидной пленки, используемой в качестве разделителя обкладок, имеют диэлектрик из полимера. Такой вид конденсатора не подвержен раздуванию и утечке заряда.

Физические свойства полимера способствуют тому, что такие конденсаторы отличаются большим импульсным током, низким эквивалентным сопротивлением и стабильным температурным коэффициентом даже при низких температурах.

Полимерные конденсаторы могут заменять электролитические или танталовые конденсаторы во многих схемах, например, в фильтрах для импульсных блоков питания, или в преобразователях DC-DC.

Пленочные конденсаторы

В данном виде конденсатора диэлектриком является пленка из пластика, например, полиэстер (KT, MKT, MFT), полипропилен (KP, MKP, MFP) или поликарбонат (KC, MKC).

Электроды могут быть напыленными на эту пленку (MKT, MKP, MKC) или изготовлены в виде отдельной металлической фольги, сматывающейся в рулон или спрессованной вместе с пленкой диэлектрика (KT, KP, KC). Современным материалом для пленки конденсаторов является полифениленсульфид (PPS).

Общие свойства пленочных конденсаторов (для всех видов диэлектриков):

  • работают исправно при большом токе;
  • имеют высокую прочность на растяжение;
  • имеют относительно небольшую емкость;
  • минимальный ток утечки;
  • используется в резонансных цепях и в RC-снабберах.

Отдельные виды пленки отличаются:

  • температурными свойствами (в том числе со знаком температурного коэффициента емкости, который является отрицательным для полипропилена и полистирола, и положительным для полиэстера и поликарбоната)
  • максимальной рабочей температурой (от 125 °C, для полиэстера и поликарбоната, до 100 °C для полипропилена и 70 °С для полистирола)
  • устойчивостью к электрическому пробою, и следовательно максимальным напряжением, которое можно приложить к определенной толщине пленки без пробоя.

Конденсаторы керамические

Этот вид конденсаторов изготавливают в виде одной пластины или пачки пластин из специального керамического материала. Металлические электроды напыляют на пластины и соединяют с выводами конденсатора. Используемые керамические материалы могут иметь очень разные свойства.

Разнообразие включает в себя, прежде всего, широкий диапазон значений относительной электрической проницаемости (до десятков тысяч) и такая величина имеется только у керамических материалов.

Столь высокое значение проницаемости позволяет производить керамические конденсаторы (многослойные) небольших размеров, емкость которых может конкурировать с емкостью электролитических конденсаторов, и при этом работающих с любой поляризацией и характеризующихся меньшими утечками.

Керамические материалы характеризуются сложной и нелинейной зависимостью параметров от температуры, частоты, напряжения. В виду малого размера корпуса — данный вид конденсаторов имеет особую .

Конденсаторы с воздушным диэлектриком

Здесь диэлектриком является воздух. Такие конденсаторы отлично работают на высоких частотах, и часто выполняются как конденсаторы переменной емкости (для настройки).

После того, как было установлено разделение тел на проводники и непроводники, а опыты с электростатическими машинами получили широчайшее распространение, совершенно естественной была попытка «накопить» электрические заряды в каком-то стеклянном сосуде, который мог их сохранить. Среди многих физиков, занявшихся подобными экспериментами, наибольшую известность получил голландский профессор из г. Лейдена Мусхенбрук (Мушенбрек) (1692—1761 гг.).

Зная, что стекло не проводит электричества, он (в 1745 г.) взял стеклянную банку (колбу), наполненную водой, опустил в нее медную проволоку, висевшую на кондукторе электрической машины, и, взяв банку в правую руку, попросил своего помощника вращать шар машины. При этом он правильно предположил, что заряды, поступавшие с кондуктора, будут накапливаться в стеклянной банке.

После того, как по его мнению, в банке накопилось достаточное количество зарядов, он решил левой рукой отсоединить медную проволоку. При этом он ощутил сильный удар, ему показалось, что «пришел конец». В письме Реомюру в Париж (в 1746 г.) он писал, что этот «новый и страшный опыт советую самим никак не повторять» и что «даже ради короны Франции он не согласится подвергнуться столь ужасному сотрясению».

Так была изобретена лейденская банка (по имени г. Лейдена), а вскоре и первый простейший конденсатор, одно из распространеннейших электротехнических устройств.

Опыт Мусхенбрука произвел подлинную сенсацию не только среди физиков, но и многих любителей, интересовавшихся электрическими опытами.

Независимо от Мусхенбрука в том же 1745 г. к созданию лейденской банки пришел и немецкий ученый Э.Г. Клейст. Опыты с лейденской банкой стали производить физики разных стран, а в 1746—1747 гг. первые теории лейденской банки разработали знаменитый американский ученый Б. Франклин и хранитель физического кабинета англичанин В. Уатсон. Небезынтересно отметить, что Уатсон стремился определить скорость распространения электричества, «заставив» его «пробежать» 12 000 футов.

Одним из важнейших последствий изобретения лейденской банки явилось установление влияния электрических разрядов на организм человека, что привело к зарождению электромедицины.

Опыт Мусхенбрука был повторен в присутствии французского короля аббатом Нолле. Он образовал цепь из 180 гвардейцев взявшихся за руки, причем первый держал банку в руке, а последний прикасался к проволоке, извлекая искру. «Удар почувствовался всеми в один момент; было курьезно видеть разнообразие жестов и слышать мгновенный вскрик десятков людей». От этой цепи солдат и произошел термин «электрическая цепь».

Постепенно конструкция лейденской банки совершенствовалась: воду заменили дробью, а затем наружная поверхность покрывалась тонкими свинцовыми пластинами; позднее внутреннюю и наружную поверхности стали покрывать оловянной фольгой, и банка приобрела современный вид.

При проведении исследований с банкой было установлено (в 1746г. англичанином Б. Вильсоном), что количество электричества, собираемое в банке, пропорционально размеру обкладок и обратно пропорционально толщине изоляционного стоя. В 70-х гг. XVIII в. металлические пластины стали разделять не стеклом, а воздушным промежутком — так, появился простейший конденсатор.

по материалам.